Research article

Commuting Toeplitz operators on weighted harmonic Bergman spaces and hyponormality on the Bergman space of the punctured unit disk

  • Received: 16 April 2024 Revised: 08 June 2024 Accepted: 14 June 2024 Published: 20 June 2024
  • MSC : 15B05, 15B48, 47B20, 47B35, 47B47

  • We first describe commuting Toeplitz operators with harmonic symbols on weighted harmonic Bergman spaces. Then, a sufficient condition for hyponormality on weighted Bergman spaces of the punctured unit disk, when the analytic part of the symbol is a monomial, is shown.

    Citation: Houcine Sadraoui, Borhen Halouani. Commuting Toeplitz operators on weighted harmonic Bergman spaces and hyponormality on the Bergman space of the punctured unit disk[J]. AIMS Mathematics, 2024, 9(8): 20043-20057. doi: 10.3934/math.2024977

    Related Papers:

  • We first describe commuting Toeplitz operators with harmonic symbols on weighted harmonic Bergman spaces. Then, a sufficient condition for hyponormality on weighted Bergman spaces of the punctured unit disk, when the analytic part of the symbol is a monomial, is shown.



    加载中


    [1] S. Axler, Z. Cuckovic, Commuting Toeplitz operators with harmonic symbols, Integr. Equ. Oper. Theory, 14 (1991), 1–12. https://doi.org/10.1007/BF01194925 doi: 10.1007/BF01194925
    [2] B. R. Choe, Y. J. Lee, Commuting Toeplitz operators on the harmonic Bergman space, Michigan Math. J., 46 (1999), 163–174. https://doi.org/10.1307/mmj/1030132367 doi: 10.1307/mmj/1030132367
    [3] H. Sadraoui, M. Guediri, Hyponormality of Toeplitz operators on the Bergman space of an annulus, Rev. Union Mat. Argent., 61 (2020), 303–313.
    [4] H. Sadraoui, Hyponormality of Toeplitz operators and cohyponormality of composition operators, PhD Thesis, Purdue University, 1992.
    [5] P. Ahern, Z. Cuckovic, A mean value inequality with applications to Bergman space operators, Pacific J. Math., 173 (1996), 295–305.
    [6] H. Sadraoui, M. Garayev, H. Guediri, On Hyponormality of Toeplitz operators, Rocky Mountain J. Math., 51 (2021), 1821–1831. https://doi.org/10.1216/rmj.2021.51.1821 doi: 10.1216/rmj.2021.51.1821
    [7] H. Hedenmalm, B. Korenblum, K. H. Zhu, Theory of Bergman spaces, New York: Springer, 2000. https://doi.org/10.1007/978-1-4612-0497-8
    [8] N. Ghiloufi, M. Zaway, Meromorphic Bergman spaces, Ukr. Math. J., 74 (2023), 1209–1224. https://doi.org/10.1007/s11253-023-02130-9 doi: 10.1007/s11253-023-02130-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(682) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog