Research article Special Issues

Global stability of local fractional Hénon-Lozi map using fixed point theory

  • Received: 03 February 2022 Revised: 06 March 2022 Accepted: 13 March 2022 Published: 12 April 2022
  • MSC : 28D37, 30D05

  • We present an innovative piecewise smooth mapping of the plane as a parametric discrete-time chaotic system that has robust chaos over a share of its significant organization parameters and includes the generalized Henon and Lozi schemes as two excesses and other arrangements as an evolution in between. To obtain the fractal Henon and Lozi system, the generalized Henon and Lozi system is defined by adopting the fractal idea (FHLS). The recommended system's dynamical performances are investigated from many angles, such as global stability in terms of the set of fixed points.

    Citation: Rabha W. Ibrahim, Dumitru Baleanu. Global stability of local fractional Hénon-Lozi map using fixed point theory[J]. AIMS Mathematics, 2022, 7(6): 11399-11416. doi: 10.3934/math.2022636

    Related Papers:

  • We present an innovative piecewise smooth mapping of the plane as a parametric discrete-time chaotic system that has robust chaos over a share of its significant organization parameters and includes the generalized Henon and Lozi schemes as two excesses and other arrangements as an evolution in between. To obtain the fractal Henon and Lozi system, the generalized Henon and Lozi system is defined by adopting the fractal idea (FHLS). The recommended system's dynamical performances are investigated from many angles, such as global stability in terms of the set of fixed points.



    加载中


    [1] M. Hénon, A two-dimensional mapping with a strange attractor, Commun.Math. Phys., 50 (1976), 69–77. http://dx.doi.org/10.1007/BF01608556 doi: 10.1007/BF01608556
    [2] S. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering, Boca Raton: CRC press, 2018.
    [3] Z. Elhadj, J. Sprott, A unified piecewise smooth chaotic mapping that contains the Hénon and the Lozi systems, Annual Review of Chaos Theory, Bifurcations and Dynamical Systems, 1 (2011), 50–60.
    [4] A. Ouannas, A. Khennaoui, X. Wang, V. Pham, S. Boulaaras, S. Momani, Bifurcation and chaos in the fractional form of Hénon-Lozi type map, Eur. Phys. J. Spec. Top., 229 (2020), 2261–2273. http://dx.doi.org/10.1140/epjst/e2020-900193-4 doi: 10.1140/epjst/e2020-900193-4
    [5] K. Kolwankar, A. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6 (1996), 505. http://dx.doi.org/10.1063/1.166197 doi: 10.1063/1.166197
    [6] X. Yang, D. Baleanu, H. Srivastava, Local fractional integral transforms and their applications. Pittsburgh: Academic Press, 2016. http://dx.doi.org/10.1016/C2014-0-04768-5
    [7] X. Yang, D. Baleanu, H. Srivastava, Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., 47 (2015), 54–60. http://dx.doi.org/10.1016/j.aml.2015.02.024 doi: 10.1016/j.aml.2015.02.024
    [8] C. Cattani, H. Srivastava, X. Yang, Fractional dynamics, Warsaw: De Gruyter Open Poland, 2015. http://dx.doi.org/10.1515/9783110472097
    [9] V. Basharan, W. Siluvairaj, M. Velayutham, Recognition of multiple partial discharge patterns by multi-class support vector machine using fractal image processing technique, IET Sci. Meas. Technol., 12 (2018), 1031–1038. http://dx.doi.org/10.1049/iet-smt.2018.5020 doi: 10.1049/iet-smt.2018.5020
    [10] K. Jena, S. Mishra, S. Mishra, An edge detection approach for fractal image processing, In: Examining fractal image processing and analysis, Hershey: IGI Global, 2020, 1–22. http://dx.doi.org/10.4018/978-1-7998-0066-8.ch001
    [11] P. Chowdhury, P. Shivakumara, H. Jalab, R. Ibrahim, U. Pal, T. Lu, A new fractal series expansion based enhancement model for license plate recognition, Signal Process.-Image, 89 (2020), 115958. http://dx.doi.org/10.1016/j.image.2020.115958 doi: 10.1016/j.image.2020.115958
    [12] A. Al-Shamasneh, H. Jalab, S. Palaiahnakote, U. Obaidellah, R. Ibrahim, M. El-Melegy, A new local fractional entropy-based model for kidney MRI image enhancement, Entropy, 20 (2018), 344. http://dx.doi.org/10.3390/e20050344 doi: 10.3390/e20050344
    [13] Y. Chen, Y. Long, Spatial signal analysis based on wave-spectral fractal scaling: a case of urban street networks, Appl. Sci., 11 (2021), 87. http://dx.doi.org/10.3390/app11010087 doi: 10.3390/app11010087
    [14] Z. Elhadj, Dynamical systems: theories and applications, Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9780429028939
    [15] R. Matousek, R. Lozi, T. Hulka, Stabilization of higher periodic orbits of the Lozi and Hénon maps using meta-evolutionary approaches, Proceedings of IEEE Congress on Evolutionary Computation (CEC), 2021,572–579. http://dx.doi.org/10.1109/CEC45853.2021.9504798
    [16] E. Bonyah, M. Yavuz, D. Baleanu, S. Kumar, A robust study on the listeriosis disease by adopting fractal-fractional operators, Alex. Eng. J., 61 (2022), 2016–2028. http://dx.doi.org/10.1016/j.aej.2021.07.010 doi: 10.1016/j.aej.2021.07.010
    [17] S. Qureshi, R. Jan, Modeling of measles epidemic with optimized fractional order under Caputo differential operator, Chaos Soliton. Fract., 145 (2021), 110766. http://dx.doi.org/10.1016/j.chaos.2021.110766 doi: 10.1016/j.chaos.2021.110766
    [18] K. Sadri, K. Hosseini, D. Baleanu, S. Salahshour, C. Park, Designing a matrix collocation method for fractional delay integro-differential equations with weakly singular kernels based on Vieta-Fibonacci polynomials, Fractal Fract., 6 (2022), 2. http://dx.doi.org/10.3390/fractalfract6010002 doi: 10.3390/fractalfract6010002
    [19] S. Qureshi, M. Chang, A. Shaikh, Analysis of series RL and RC circuits with time-invariant source using truncated M, Atangana beta and conformable derivatives, J. Ocean Eng. Sci., 6 (2021), 217–227. http://dx.doi.org/10.1016/j.joes.2020.11.006 doi: 10.1016/j.joes.2020.11.006
    [20] A. Yusuf, S. Qureshi, U. Mustapha, S. Musa, T. Sulaiman, Fractional modeling for improving scholastic performance of students with optimal control, Int. J. Appl. Comput. Math., 8 (2022), 37. http://dx.doi.org/10.1007/s40819-021-01177-1 doi: 10.1007/s40819-021-01177-1
    [21] S. Qureshi, Fox H-functions as exact solutions for Caputo type mass spring damper system under Sumudu transform, J. Appl. Math. Comp. Mec., 20 (2021), 83–89. http://dx.doi.org/10.17512/jamcm.2021.1.08 doi: 10.17512/jamcm.2021.1.08
    [22] X. Li, Y. Wang, M. Khan, M. Alshahrani, T. Muhammad, A dynamical study of SARS-COV-2: a study of third wave, Results Phys., 29 (2021), 104705. http://dx.doi.org/10.1016/j.rinp.2021.104705 doi: 10.1016/j.rinp.2021.104705
    [23] Z. Shen, Y. Chu, M. Khan, S. Muhammad, O. Al-Hartomy, M. Higazy, Mathematical modeling and optimal control of the COVID-19 dynamics, Results Phys., 31 (2021), 105028. http://dx.doi.org/10.1016/j.rinp.2021.105028 doi: 10.1016/j.rinp.2021.105028
    [24] X. Li, N. Gul, M. Khan, R. Bilal, A. Ali, M. Alshahrani, A new Hepatitis B model in light of asymptomatic carriers and vaccination study through Atangana-Baleanu derivative, Results Phys., 29 (2021), 104603. http://dx.doi.org/10.1016/j.rinp.2021.104603 doi: 10.1016/j.rinp.2021.104603
    [25] P. Xiong, M. Ijaz Khan, R. Punith Gowda, R. Naveen Kumar, B. Prasannakumara, Y. Chu, Comparative analysis of (Zinc ferrite, Nickel Zinc ferrite) hybrid nanofluids slip flow with entropy generation, Mod. Phys. Lett. B, 35 (2021), 2150342. http://dx.doi.org/10.1142/S0217984921503425 doi: 10.1142/S0217984921503425
    [26] P. Xiong, A. Hamid, Y. Chu, M. Ijaz Khan, R. Gowda, R. Naveen Kumar, et al., Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of cross nanofluid by a vertical thin needle point, Eur. Phys. J. Plus, 136 (2021), 315. http://dx.doi.org/10.1140/epjp/s13360-021-01294-2 doi: 10.1140/epjp/s13360-021-01294-2
    [27] T. Abdeljawad, A. Atangana, J. Gómez-Aguilar, F. Jarad, On a more general fractional integration by parts formulae and applications, Physica A, 536 (2019), 122494. http://dx.doi.org/10.1016/j.physa.2019.122494 doi: 10.1016/j.physa.2019.122494
    [28] A. Khan, H. Khan, J. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. http://dx.doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026
    [29] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, J. Gomez-Aguilar, Mild solutions of coupled hybrid fractional order system with Caputo-Hadamard derivatives, Fractals, 29 (2021), 2150158. http://dx.doi.org/10.1142/S0218348X21501589 doi: 10.1142/S0218348X21501589
    [30] H. Khan, T. Abdeljawad, J. Gomez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel, Fractals, 29 (2021), 2150154. http://dx.doi.org/10.1142/S0218348X21501541 doi: 10.1142/S0218348X21501541
    [31] O. Martínez-Fuentes, F. Meléndez-Vázquez, G. Fernández-Anaya, J. Gómez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: Lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. http://dx.doi.org/10.3390/math9172084 doi: 10.3390/math9172084
    [32] Asma, J. Gómez-Aguilar, G. Rahman, M. Javed, Stability analysis for fractional order implicit $\psi$-Hilfer differential equations, Math. Method. Appl. Sci., 45 (2022), 2701–2712. http://dx.doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948
    [33] G. Gottwald, I. Melbourne, A new test for chaos in deterministic systems, Proc. R. Soc. Lond. A., 460 (2004), 603–611. http://dx.doi.org/10.1098/rspa.2003.1183 doi: 10.1098/rspa.2003.1183
    [34] G. Gottwald, I. Melbourne, On the implementation of the 0-1 test for chaos, SIAM J. Appl. Dyn. Syst., 8 (2009), 129–145. http://dx.doi.org/10.1137/080718851 doi: 10.1137/080718851
    [35] G. Gottwald, I. Melbourne, The 0-1 test for chaos: a review, In: Lecture notes in physics, Berlin: Springer, 2016,221–247. http://dx.doi.org/10.1007/978-3-662-48410-4_7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1591) PDF downloads(71) Cited by(7)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog