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1. Introduction

Finding commuting Toeplitz operators is a question of interest for researchers working on Toeplitz
operators. The most important results on this subject are from the work of Axler and Cuckovic [1]
in the case of the Bergman space, and Choe and Lee in the case of the harmonic Bergman space [2].
The results of Axler and Cuckovic are generalized by the authors to the case of the weighted Bergman
space [3]. In the first part, we generalize most of the results of Choe and Lee to the case of weighted
harmonic Bergman spaces. In the second part, we give a sufficient condition for hyponormality on
newly considered Bergman spaces on the punctured unit disk. Hyponormality has seen growing interest
the last few decades. The first important result is the following.

Theorem 1.1. Let f , g be bounded and analytic in the unit disk D with f ′ ∈ H2. If T f+g is hyponormal
on the Bergman space, then g′ ∈ H2 and |g′| ≤ | f ′| a.e in the unit circle.

This can be found in [4]. Ahern and Cuckovic generalized this result in [5] by weakening the
assumption on the derivative. Their result itself is generalized to weighted Bergman spaces in [6].

Theorem 1.2. Let f , g be bounded and analytic in the unit disk D. Assume f ′ ∈ H2(I), where I
is an open arc of the unit circle. If T f+g is hyponormal on the weighted Bergman space L2

a,ω, where
ω(r) = (α + 1)(1 − r2)α, α > −1, then, g′ ∈ H2(I) and |g′| ≤ | f ′| a.e on I.
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2. Commuting Toeplitz operators on the weighted harmonic Bergman space

Denote by D the unit disk and consider the Hilbert space L2 (D, dµα) of measurable functions on D
such that

(α + 1)
∫

D
| f (z)|2(1 − |z|2)α dA(z) < ∞.

The closed subspace of L2 (D, dµα) consisting of harmonic functions is denoted by L2
h. If the weighted

Bergman space is denoted by L2
a,ω where ω(r) = (α+ 1)(1− r2)α, then L2

h = L2
a,ω ⊕ zL2

a,ω. As in the case
of unweighted spaces (ω = 1) [2], the reproducing kernel is given by

K(z,w) =
1

(1 − zw)α+2 +
1

(1 − zw)α+2 − 1.

In what follows, we consider commuting Toeplitz operators on L2
h with harmonic symbols φ and

ψ. We denote by P the projection of L2 (D, dµα) onto L2
a,ω, and by Q the projection onto L2

h. We have
Q(φ) = P(φ) + P(φ) − P(φ)(0), where P(φ)(0) =

∫
D
φdA. We give a generalization of some of the

results in [2], shown in the case of the unweighted harmonic Bergman space, to the case of weighted
harmonic Bergman spaces with radial weights ω(r) = (α + 1)(1 − r2)α, where α > −1. Our first main
result is the following theorem.

Theorem 2.1. Let φ and ψ be in L2
h and not both conjugate holomorphic. If TφTψ = TψTφ, then

∂ψ

∂z = c∂φ
∂z for some constant c.

The proof is based on the properties of the projection. Here is a summary of the proof of Theorem
2.1. Set φ = φ1 + φ2, ψ = ψ1 + ψ2. Then,

TφTψ = TψTφ ⇔ Tφ1Tψ2
+ Tφ2Tψ1 = Tψ2

Tφ1 + Tψ1Tφ2 .

By evaluation at w, and after making extensive use of some properties of the Bergman space projection
we get φ1P (wψ1) = ψ1P (wφ1). By Proposition 2.2, this is reduced to ψ1 = cφ1.

We start by verifying these properties.

Proposition 2.2. Let φ ∈ L2
a,ω. The projection onto L2

a,ω satisfies the following properties:

(i) z2 d
dz P

(
(1 − |w|2)φ

)
+ (α + 2)zP

(
(1 − |w|2)φ

)
= (α + 1)zφ(z).

(ii) z2 d
dz P

(
(1 − |w|2)φ

)
+ (α + 2)zP

(
(1 − |w|2)φ

)
= (α + 1)zφ(0).

(iii) P
(
|w|2φ

)
(z) = φ(z) − (α+1)

zα+2

∫ z

0
uα+1φ(u)du.

(iv) P
(
|w|2φ

)
= P

(
|w|2φ

)
(0) = α+1

α+2φ(0).

Proof. For (i) we have

f (z) = P
(
(1 − |w|2)φ

)
(z) = (α + 1)

∫
D

φ(w)
(1 − zw)α+2 (1 − |w|2)α+1dA(w)
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and, by differentiating under the integral sign, we get

f ′(z) = (α + 1)(α + 2)
∫

D

φ(w)w
(1 − zw)α+3 (1 − |w|2)α+1dA(w).

We deduce

(α + 2)z f (z) + z2 f ′(z) = (α + 1)(α + 2)
∫

D

φ(w)z
(1 − zw)α+3 (1 − |w|2)α+1dA(z)

= (α + 1)zφ(z),

where the last equality holds because Kz(w) = 1
(1−zw)α+3 is the reproducing kernel of the weighted

Bergman space with a weight ω2(r) = (α + 2)(1 − r2)α+1dA(z) [7]. We obtain Eq (ii) in a similar
manner. For Eq (iii), we formally solve the differential equation

f ′ +
(α + 2)

z
f =

(α + 1)
z

φ,

which gives

P
(
(1 − |w|2)φ

)
(z) =

(α + 1)
zα+2

∫ z

0
uα+1φ(u) du,

and
P

(
|w|2φ

)
(z) = φ(z) −

(α + 1)
zα+2

∫ z

0
uα+1φ(u) du.

Similarly, from (ii), by integration we get

P
(
(1 − |w|2)φ

)
=
α + 1
α + 2

φ(0),

thus
P

(
|w|2φ

)
=

1
α + 2

φ(0).

□

This leads to the following properties of the projection.

Lemma 2.3. Let φ ∈ L2
a,ω satisfy φ(0) = 0. The following properties hold:

1) P (wφ) (z) = φ(z)
z −

α+1
zα+2

∫ z

0
uαφ(u) du.

2) P (wφ) (z) = 1
α+2φ

′(0).

Proof. Since φ(0) = 0, φ(z) = zψ(z). From (iii) and (iv) of Proposition 2.2, we get

P (wφ) (z) = P
(
|w|2ψ

)
(z) =

φ(z)
z
−

(α + 1)
zα+2

∫ z

0
uαφ(u) du,

P (wφ) (z) = P
(
|w|2ψ

)
(z) =

1
α + 2

ψ(0) =
1

α + 2
φ′(0).

□
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The following properties of the projection of L2 (D, dµα) are easy to check. The first one is a
consequence of the known property of Toeplitz operators T f Tg = T f g on L2

a,ω if g is analytic or f is
conjugate analytic.

Lemma 2.4. For φ and ψ ∈ L2
a,ω, we have the following equalities:

(i) P (φP(wψ)) (z) = P (φwψ) (z).

(ii) P
(
φP(wψ

)
(0) = P

(
φwψ

)
(0).

Proof. We verify (ii):

P
(
φP(wψ

)
(0) =

〈
P

(
φP(wψ)

)
, 1

〉
=

〈
φP(wψ), 1

〉
=

〈
P(wψ), φ

〉
= ⟨φ, P (wψ)⟩ = P

(
φwψ

)
(0).

□

This leads to the following theorem.

Theorem 2.5. Let φ and ψ be in L2
h. If TφTψ = TψTφ, then, there exists a constant λ such that ∂ψ

∂z = λ
∂φ

∂z .

Proof. We have φ = φ1 + φ2, and ψ = ψ1 + ψ2, where φ1, φ2, ψ1 and ψ2 ∈ L2
a,ω. We may assume

φ1(0) = φ2(0) = ψ1(0) = ψ2(0) = 0.

We evaluate both sides of the equality TφTψ = TψTφ at the function w. We make use of the following
equalities, where Lemmas 2.3 and 2.4 are used.

Tψ1(w) = P (wψ1) + P
(
wψ1

)
− P (wψ1) (0) = P (wψ1)

Tφ2Tψ1(w) = P (φ2(P(wψ1))) + P
(
φ2P(wψ1)

)
− P (φ2P(wψ1)) (0)

Tφ1Tψ1(w) = φ1P (wψ1)

Tφ1Tψ2
(w) = Q

(
φ1wψ2

)
= P

(
φ1wψ2

)
+ P (φ1wψ2) − P

(
φ1wψ2

)
(0)

Tφ2Tψ2
(w) = φ2ψ2w.

Similarly, we compute

Tψ2Tφ1(w) = P
(
ψ2(P(wφ1))

)
+ P

(
ψ2P(wφ)

)
− P

(
ψ2P(wφ1)

)
(0)

Tψ1Tφ2(w) = Q (ψ1wφ2) = P (ψ1wφ2) + P(ψ1wφ2) − P (ψ1wφ2) (0)

Tψ1Tφ1(w) = ψ1P(wφ1)

Tψ2
Tφ2(w) = φ2ψ2w.

Thus, the equality
TφTψ(w) = TψTφ(w)
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leads to

φ1P(wψ1) + P(φ1wψ2) + P
(
φ2P(wψ1)

)
= ψ1P(wφ1) + P(ψ1wφ2) + P

(
ψ2P(wφ1)

)
. (2.1)

We deduce that
φ1P(wψ1) = ψ1P(wφ1),

which, by Proposition 2.2, gives

φ1(z).
(
ψ1(z)

z
−
α + 1
zα+2

∫ z

0
uαψ1(u)du

)
= ψ1(z).

(
φ1(z)

z
−
α + 1
zα+2

∫ z

0
uαφ1(u) du

)
,

which can be written as
Φ′1(z)Ψ1(z) = Φ1(z)Ψ′1(z),

where
Φ1(z) =

∫ z

0
uαφ1(u)du), Ψ1(z) =

∫ z

0
uαψ1(u)du.

This shows that
Ψ1(z) = cΦ1(z),

and, consequently,
ψ1 = cφ1

for some constant c. □

Corollary 2.6. Let φ, ψ be in L2
a,ω. The equality TφTψ = TψTφ holds if and only if ψ = cφ + d for some

constants c and d.

Our next main result is based on the following lemmas.

Lemma 2.7. Let φ, ψ be in L2
a,ω. Then we have the following identity:

(α + 1)
(∫

D
φ(w)ψ(w)(1 − |w|2)αdA(w)

)
=

∫
D

(
(α + 2)φ(w)ψ(w) + wψ′(w)

)
(1 − |w|2)α+1dA(w).

Proof. Use power series and the fact that, for φ, ψ in L2
a,ω, with φ =

∑
n≥0

φnzn, ψ =
∑
n≥0

ψnzn, we have the

inner product property [7]

(α + 1)
(∫

D
φ(w)ψ(w)(1 − |w|2)αdA(w)

)
=

∑
n≥0

n!Γ(α + 2)
Γ(n + α + 2)

φnψn.

□

Lemma 2.8. Let φ, ψ be in L2
a,ω and satisfy φ(0) = ψ(0) = 0. If TφTψ = TψTφ on L2

h, then the following
equality holds

∫
D
φ(w)Ψ(w)wn+α(1 − |w|2)α+1dA(w) = 0

for any n ∈ N, where Ψ(w) = α+1
wα+1

∫ w

0
uαψ(u)du.
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Proof. From TφTψ = TψTφ, we deduce TψTφ = TφTψ, which, by evaluation at w and from Eq (2.1) by
taking φ = φ2, φ1 = 0, ψ = ψ1, and ψ2 = 0 gives

P
(
φwψ

)
= P

(
φP(wψ)

)
.

This gives〈
φ, P(ψw)wn+α+1

〉
=

〈
P

(
φP (wψ)

)
,wn+α+1

〉
=

〈
P

(
φwψ

)
,wn+α+1

〉
=

〈
φw, ψwn+α+1

〉
, n ≥ 0.

Using the identity wP (ψw) = ψ − Ψ, we get

(α + 1)
∫

D
φ(w)(ψ(w) − Ψ(w))wn+α(1 − |w|2)αdA(w) = (α + 1)

∫
D
φ(w)ψ(w)wn+α|w|2(1 − |w|2)αdA(w),

which can be written as

(α + 1)
∫

D
φ(w)ψ(w)wn+α(1 − |w|2)α+1dA(w) = (α + 1)

∫
D
φ(w)Ψ(w)wn+α(1 − |w|2)αdA(w). (2.2)

Using Lemma 2.7, we get

(α + 1)
∫

D
φ(w)Ψ(w)wn+α(1 − |w|2)αdA(w) =

∫
D
φ(w)

(
(α + 2)Ψ(w)wn+α + w(Ψ(w)wn+α)′

)
(1 − |w|2)α+1dA(w)

=

∫
φ(w)

(
(n + α + 1)Ψ(w) + (α + 1)ψ(w)

)
wn+α(1 − |w|2)α+1dA(w).

After a simplification using Eq (2.2), we deduce∫
D
φ(w)(Ψ(w)wn+α)′(1 − |w|2)α+1dA(w) = 0.

□

This leads to the second main result. The proof, being similar to the case of the unweighted
harmonic Bergman space [2], is omitted.

Theorem 2.9. Assume f ∈ L2
h. Then, T f is normal if and only if f (D) is contained in a line in the

complex plane. If f ∈ L2
a,ω, then T f is normal if and only if f is constant.

3. Hyponormality on the weighted Bergman space of the punctured unit disk

Let m be a nonnegative integer, β be in (m − 1,m], and α > −1 be a real number. Let
dµα,β(z) = 1

B(α+1,β+1) |z|
2β(1 − |z|2)αdA(z) be the normalized Lebesgue measure on the unit disk D. The

space L2(D, dµα,β) is the Hilbert space of measurable functions f on D such that

|| f ||2 =
∫

D
| f (z)|2dµα,β(z) < ∞.

We consider holomorphic functions g on D∗ = D − {0} that satisfy∫
D∗
|g(z)|2dµα,β(z) < ∞.
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In [8], it is shown that this space, denoted by A2
α,β, is a closed Hilbert space of L2

(
D, dµα,β

)
. If f =∑

n≥−m

anzn and g =
∑

n≥−m

bnzn, then the inner product is given by

⟨ f , g⟩ =
∑

n≥−m

B(α + 1, β + n + 1)
B(α + 1, β + 1)

anbn,

and its natural orthonormal basis is
{
en(z) =

√
B(α+1,β+1)

B(α+1,β+n+1)z
n, n ≥ −m

}
. We set ρn =

B(α+1,β+n+1)
B(α+1,β+1) , n ≥

−m, and recall that a Toeplitz operator Tφ, for φ bounded measurable on D, is defined on A2
α,β by

Tφ( f ) = P(φ f ), where P is the orthogonal projection onto A2
α,β. Hankel opertaors on A2

α,β are defined
by Hφ( f ) = (I − P)(φ f ). The following properties of Toeplitz operators, known in the case of the
weighted Bergman space A2

α (β = 0), hold also on A2
α,β.

Proposition 3.1. [8] Let φ and ψ be bounded measurable on D. The following properties hold:

(i) Tφ+ψ = Tφ + Tψ.

(ii)
(
Tφ

)∗
= Tφ.

(iii) TψTφ = Tφψ if φ analytic or ψ is conjugate analytic on D.

A bounded operator S on a Hilbert space is hyponormal if S ∗S − S S ∗ ≥ 0. In what follows,
we consider hyponormality of Toeplitz operator Tzq+ψ on A2

α,β where ψ is a polynomial. We show a
sufficient condition in this case. As in the case of the classical unweighted Bergman space A2

0,0 [4],
hyponormality is expressed in various equivalent forms which are listed in the following proposition.

Proposition 3.2. [4] The following statements are equivalent:

(a) Tφ+ψ is hyponormal.

(b) TψTψ − TψTψ ≤ TφTφ − TφTφ.

(c)
(
Hψ

)∗
Hψ ≤

(
Hφ

)∗
Hφ.

(d) Hψ = CHφ, where C is bounded of norm less than or equal to one.

3.1. The main result

We consider the case α = 3. Let l and q be two integers such that q ≥ m + 1. Denote by N the
smallest integer such that N ≥ max

(
6q + 1, 8, 1

2 (q2 − 1)
)
. Our main result is the following theorem.

Theorem 3.3. Let (λl)N≤l≤N1 be any finite sequence of complex numbers such that
∑

N≤l≤N1

|λl| ≤ 1, and

set g =
∑

N≤l≤N1

λl
q
l
zl. Then, the operator Tzq+g is hyponormal on A2

α,β i.e TgTg − TgTg ≤ TzqTzq − TzqTzq .

In the case α = 3, we have

ρn =
(β + 4)(β + 3))(β + 2)(β + 1)

(β + n + 4)(β + n + 3)(β + n + 2)(β + n + 1)
.

We start by computing the matrix of TzqTzq − TzqTzq in the orthonomal basis {en, n ≥ −m}.

AIMS Mathematics Volume 9, Issue 8, 20043–20057.
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Lemma 3.4. The matrix of TzqTzq − TzqTzq is diagonal and is given by

ηi,i =


ρq+i

ρi
, if i < q − m;

ρq+i

ρi
−

ρi
ρi−q

, if i ≥ q − m.

Proof. We clearly have〈
TzqTzqei, e j

〉
= 0 if i , j, and ⟨TzqTzqei, ei⟩ =

ρq+i

ρi
.

Since 〈
P(zqzi), zk

〉
= 0 if k , i − q,

necessarily,
P(zqzi) = czi−q,

and 〈
P(zqzi), zi−q

〉
=

〈
czi−q, zi−q

〉
= cρi−q〈

P(zqzi), zi−q
〉
= ρi.

We deduce c = ρi
ρi−q
, and

⟨Tzqei,Tzqei⟩ =

{ ρi
ρi−q

if i ≥ q − m;
0 if i < q − m.

□

This leads to the following proposition on which our main result is based.

Proposition 3.5. Let l and q be two integers with q ≥ m + 1, l ≥ max
(
6q + 1, 1

2 (q2 − 1), 8
)
. Then,

Tzq+δzl is hyponormal if and only if |δ| ≤ q
l .

Proof. Hyponormality is equivalent to the following three inequalities:

|δ|2
ρl+i

ρi
≤
ρq+i

ρi
, i < q − m. (3.1)

|δ|2
ρl+i

ρi
≤
ρq+i

ρi
−

ρi

ρi−q
, q − m ≤ i < l − m. (3.2)

|δ|2(
ρl+i

ρi
−

ρi

ρi−l
) ≤

ρq+i

ρi
−

ρi

ρi−q
, i ≥ l − m. (3.3)

The first inequality (3.1) takes the form

|δ|2 ≤ min
{

(β + l + i + 4)(β + l + i + 3)(β + l + i + 2)(β + l + i + 1)
(β + q + i + 4)(β + q + i + 3)(β + q + i + 2)(β + q + i + 1)

, i < q − m
}
.

Since the right hand side of this inequality decreases with i, inequality (3.1) is equivalent to

|δ| ≤

√
(β + l + q − m + 3)(β + l + q − m + 2)(β + l + q − m + 1)(β + l + q − m)

(β + 2q − m + 3)(β + 2q − m + 2)(β + 2q − m + 1)(β + 2q − m)
.
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Inequality (3.2) can be written as

|δ|2 ≤
ρi+qρi−q − ρi2

ρl+iρi−q
, q − m ≤ i < l − m.

A computation reduces the above inequality to

|δ|2 ≤ min
{
Ql,q,iRq,i, q − m ≤ i < l − m

}
,

where
Ql,q,i =

(β + l + i + 4)(β + l + i + 3)(β + l + i + 2)(β + l + i + 1)
(β + q + i + 4)(β + q + i + 3)(β + q + i + 2)(β + q + i + 1)

,

and

Rq,i = 1 − (1 −
q2

(β + i + 4)2 )(1 −
q2

(β + i + 3)2 )(1 −
q2

(β + i + 2)2 )(1 −
q2

(β + i + 1)2 ). (3.4)

As mentioned before, Ql,q,i is a decreasing function of i and it is not difficult to see that Rq,i is also
decreasing. Thus, we get that inequality (3.2) is equivalent to

|δ| ≤
√

Ql,q,l−m−1Rq,l−m−1,

or, equivalently,

|δ| ≤

√
(β + 2l − m + 3)(β + 2l − m + 2)(β + 2l − m + 1)(β + 2l − m)Rq,l−m−1

(β + q + l − m + 3)(β + q + l − m + 2)(β + q + l − m + 1)(β + q + l − m)
.

Since Ql,q,i is decreasing, Ql,q,l−m−1 ≤ Ql,q,q−m−1. Thus, we have√
Ql,q,l−m−1Rq,l−m−1 ≤

√
Ql,q,q−m−1.

That is, if inequality (3.2) is satisfied, so is inequality (3.1). Inequality (3.3) takes the form

|δ|2 ≤
ρi−l

ρi−q

ρi+qρi−q − ρ
2
i

ρi+lρi−l − ρ
2
i

, i ≥ l − m.

To simplify notation, set Ai := (β+ i+1). A computation leads to the following inequality for i ≥ l−m:

|δ|2 ≤
A2

i+3A2
i+2A2

i+1A2
i − (A2

i+3 − q2)((A2
i+2 − q2)(A2

i+1 − q2)(A2
i − q2)

A2
i+3A2

i+2A2
i+1A2

i − (A2
i+3 − l2)((A2

i+2 − l2)(A2
i+1 − l2)(A2

i − l2)
Ql,q,i.

After simplification of

F(i) =
A2

i+3A2
i+2A2

i+1A2
i − (A2

i+3 − q2)((A2
i+2 − q2)(A2

i+1 − q2)(A2
i − q2)

A2
i+3A2

i+2A2
i+1A2

i − (A2
i+3 − l2)((A2

i+2 − l2)(A2
i+1 − l2)(A2

i − l2)
,

we get

F(i) =
q2F1(i) − q4F2(i) + q6F3(i) − q8

l2F1(i) − l4F2(i) + l6F3(i) − l8 ,
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where the functions F1, F2, and F3 are as follows:

F1(i) = A2
i+3A2

i+2A2
i+1 + A2

i+3A2
i+2A2

i + A2
i+2A2

i+1A2
i + A2

i+3A2
i+1A2

i ;

F2(i) = A2
i+3A2

i+2 + A2
i+3A2

i+1 + A2
i+3A2

i + A2
i+2A2

i+1 + A2
i+2A2

i + A2
i+1A2

i ;

F3(i) = A2
i+3 + A2

i+2 + A2
i+1 + A2

i .

As seen before, Ql,q,i is a decreasing function of i. We will show that F(i) is also a decreasing function.
A computation gives

F′(i) =
E1(i) + E2(i) + E3(i) + E4(i) + E5(i) + E6(i)

(l2F1(i) − l4F2(i) + l6F3(i) − l8)2 ,

where we have
E1(i) = l2q2(q6 − l6)F′1(i);

E2(i) = l4q4(l2 + q2)(l2 − q2)F′2(i);

E3(i) = l6q6(q2 − l2)F′3(i);

E4(i) = l2q2(q2 − l2)(F′1(i)F2(i) − F1(i)F′2(i));

E5(i) = l2q2(l2 + q2)(l2 − q2)(F′1(i)F3(i) − F1(i)F′3(i));

E6(i) = l4q4(q2 − l2)(F′2(i)F3(i) − F2(i)F′3(i)).

It suffices to verify the inequalities

E1(i) + E2(i) ≤ 0, i ≥ l − m; (3.5)

E4(i) + E5(i) ≤ 0, i ≥ l − m. (3.6)

Note l − m ≥ q − m + 1 ≥ 2. We show inequality (3.5) first. It takes the form

l2q2(l2 + q2)F′2(i) ≤ (l4 + l2q2 + q4)F′1(i).

From the expressions of F1(i) and F2(i), we see that, since β + i + 1 ≥ q for i ≥ l − m,

q2F′2(i) ≤ F′1(i),

and thus inequality (3.5) holds. Inequality (3.6) can be reduced to

(l2 + q2)(F′1(i)F3(i) − F1(i)F′3(i)) ≤ F′1(i)F2(i) − F1(i)F′2(i). (3.7)

An elementary computation gives

F′1(i)F3(i) − F1(i)F′3(i) = Φ1(i) + Φ2(i) + Φ3(i) + Φ4(i) + Ψ(i),

where
Φ1(i) = P2,3

1 (i) + P2,4
1 (i) + P3,4

1 (i);

P2,3
1 (i) = 2(β + i + 1)

(
(β + i + 2)4(β + i + 3)2 + (β + i + 2)2(β + i + 3)4

)
;
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P2,4
1 (i) = 2(β + i + 1)

(
(β + i + 2)4(β + i + 4)2 + (β + i + 2)2(β + i + 4)4

)
;

and
P3,4

1 (i) = 2(β + i + 1)
(
(β + i + 3)4(β + i + 4)2 + (β + i + 3)2(β + i + 4)4

)
.

The function Φ2(i) is defined by

Φ2(i) = P1,3
2 (i) + P1,4

2 (i) + P3,4
2 (i)

where
P1,3

2 (i) = 2(β + i + 2)
(
(β + i + 1)4(β + i + 3)2 + (β + i + 1)2(β + i + 3)4

)
.

P1,4
2 and P3,4

2 are defined in a similar manner.
The functions Φ3 and Φ4 are defined in a similar way. The function Ψ is given by

Ψ(i) = Ψ1(i) + Ψ2(i) + Ψ3(i) + Ψ4(i)

with
Ψ1(i) = 4(β + i + 1)(β + i + 2)2(β + i + 3)2(β + i + 4)2,

and
Ψ2(i) = 4(β + i + 2)(β + i + 1)2(β + i + 3)2(β + i + 4)2,

and similar definitions for Ψ3 and Ψ4. Next, we simplify the right hand side of inequality (3.7). A
tedious, but elementary, computation gives

F′1(i)F2(i) − F1(i)F′2(i) = ∆(i) + Ω(i),

where
∆(i) = ∆1(i) + ∆2(i) + ∆3(i) + ∆4(i)

with

∆1(i) = 2(β + i + 1)
[
(β + i + 2)4(β + i + 3)4 + (β + i + 2)4(β + i + 4)4 + (β + i + 3)4(β + i + 4)4

]
;

∆2(i) = 2(β + i + 2)
[
(β + i + 1)4(β + i + 3)4 + (β + i + 1)4(β + i + 4)4 + (β + i + 3)4(β + i + 4)4

]
;

and similar definitions for ∆3(i) and ∆4(i). The function Ω(i) is given by

Ω(i) = Ω1(i) + Ω2(i) + Ω3(i) + Ω4(i)

with Ω1(i) and Ω2(i) defined by

Ω1(i) = Ω1,2(i) + Ω1,3(i) + Ω1,4(i),

where
Ω1,2(i) = 2(β + i + 1)

(
(β + i + 2)4(β + i + 3)2(β + i + 4)2

)
;

Ω1,3(i) = 2(β + i + 1)
(
(β + i + 3)4(β + i + 2)2(β + i + 4)2

)
;
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and Ω1,4(i) defined in a similar way. We show

(l2 + q2)Φ1(i) ≤ ∆1(i),

and, since l ≥ 1
2 (q2 − 1),

(l2 + q2)(β + i + 2)4(β + i + 3)2 ≤ (β + i + 2)4(β + i + 3)4,

and similarly
(l2 + q2)(β + i + 2)2(β + i + 3)4 ≤ (β + i + 2)4(β + i + 3)4.

Thus,
(l2 + q2)P2,3

1 ≤ 2(β + i + 1)(β + i + 2)4(β + i + 3)4.

Similar inequalities lead to
(l2 + q2)Φ1(i) ≤ ∆1(i),

and we have

(l2 + q2)Φ2(i) ≤ ∆2(i), (l2 + q2)Φ3(i) ≤ ∆3(i), (l2 + q2)Φ4(i) ≤ ∆4(i)

for i ≥ l − m. Next, we show (l2 + q2)Ψ1(i) ≤ Ω1(i) for i ≥ l − m. We clearly have

(l2 + q2)Ψ1(i) ≤ 6(β + i + 1)((β + i + 2)4(β + i + 3)2(β + i + 4)2 ≤ Ω1(i).

Similarly, we have

(l2 + q2)Ψ2(i) ≤ Ω2(i), (l2 + q2)Ψ3(i) ≤ Ω3(i), (l2 + q2)Ψ4(i) ≤ Ω4(i).

We deduce that inequality (3.6) holds and that F(i) is decreasing. Thus, inequality (3.3) holds if and
only if |δ| ≤

√
lim
i→∞

F(i) = q
l . We finally show that

q2

l2 ≤
(β + 2l − m + 3)(β + 2l − m + 2)(β + 2l − m + 1)(β + 2l − m)Rq,l−m−1

(β + l + q − m + 3)(β + l + q − m + 2)(β + l + q − m + 1)(β + l + q − m)
. (3.8)

From inequality (3.7), we have

Rq,l−m−1 = 1 − (1 −
q2

(β + l − m + 3)2 )(1 −
q2

(β + l − m + 2)2 )(1 −
q2

(β + l − m + 1)2 )(1 −
q2

(β + l − m)2 ).

To simplify notation, we set Bi := (β+ i+ 3)(β+ i+ 2)(β+ i+ 1)(β+ i). Inequality (3.8) takes the form

1 ≤
l2B2l−m(B2

l−m − Bl−m+qBl−m−q)

q2Bl−m+qB2
l−m

,

and we have

B2
l−m − Bl−m+qBl−m−q = q2F1(l − m − 1) − q4F2(l − m − 1) + q6F3(l − m − 1) − q8,
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where

F1(l − m − 1) = A2
l−m+2A2

l−m+1A2
l−m + A2

l−m+2A2
l−m+1A2

l−m−1 + A2
l−m+1A2

l−mA2
l−m−1 + A2

l−m+2A2
l−mA2

l−m−1

and, with Ai := β + i + 1 as before,

F2(l − m − 1) = A2
l−mA2

l−m−1 + A2
l−m+1A2

l−m−1 + A2
l−m+1A2

l−m + A2
l−m+2A2

l−m+1 + A2
l−m+2A2

l−m + A2
l−m+2A2

l−m−1,

and
F3(l − m − 1) = A2

l−m−1 + A2
l−m + A2

l−m+1 + A2
l−m+2.

Since
B2

l−m = A2
l−m+2A2

l−m+1A2
l−mA2

l−m−1,

we get
F1(l − m − 1)

B2
l−m

=
1

A2
l−m−1

+
1

A2
l−m

+
1

A2
l−m+1

+
1

A2
l−m+2

F2(l − m − 1)
B2

l−m

=
1

A2
l−m−1A2

l−m

+
1

A2
l−m−1A2

l−m+1

+
1

A2
l−m−1A2

l−m+2

+
1

A2
l−mA2

l−m+1

+
1

A2
l−mA2

l−m+2

+
1

A2
l−m+1A2

l−m+2

F3(l − m − 1)
B2

l−m

=
1

A2
l−m+1A2

l−mA2
l−m−1

+
1

A2
l−m+2A2

l−m+1A2
l−m

+
1

A2
l−m+2A2

l−m+1A2
l−m−1

+
1

A2
l−m+2A2

l−mA2
l−m−1

.

We see that inequality (3.8) is equivalent to

l2(B2
l−m − Bl−m+qBl−m−q)

q2B2
l−m

≥
4l2

A2
l−m+2

−
6q2l2

A2
l−m−1A2

l−m

+
4q4l2

A2
l−m+2A2

l−m+1A2
l−m

−
q6l2

A2
l−m+2A2

l−m+1A2
l−mA2

l−m−1

. (3.9)

We show that if l ≥ N, then

4l2

A2
l−m+2

−
6q2l2

A2
l−m−1A2

l−m

+
4q4l2

A2
l−m+2A2

l−m+1A2
l−m

−
q6l2

A2
l−m+2A2

l−m+1A2
l−mA2

l−m−1

≥ 1.

We then rewrite this last inequality as

4l2A2
l−m+1A2

l−mA2
l−m−1 − 6q2l2A2

l−m+2A2
l−m+1 + 4q4l2A2

l−m−1 − q6l2 ≥ A2
l−m+2A2

l−m+1A2
l−mA2

l−m−1.

Since β ∈ (m − 1,m], by assumptions on l we have

2l2A2
l−m+1A2

l−mA2
l−m−1 ≥ A2

l−m+2A2
l−m+1A2

l−mA2
l−m−1.

Thus, inequality (3.9) is satisfied if

2A2
l−m+1A2

l−mA2
l−m−1 − 6q2A2

l−m+2A2
l−m+1 + 4q4A2

l−m−1 − q6 ≥ 0.

Since by assumptions on l and q,
4q4A2

l−m−1 ≥ q6,

it is enough to have
A2

l−mA2
l−m−1 − 3q2A2

l−m+2 ≥ 0,

and this is satisfied by assumptions on l. Hence, inequality (3.9) holds. We conclude that if q ≥
m + 1 and l ≥ max

(
6q + 1, 1

2 (q2 − 1), 8
)
, Tzq+δzl is hyponormal if and only if |δ| ≤ q

l . The proof is
complete. □
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It is easy to see that if a and b are complex numbers satisfying |a| + |b| ≤ 1, and if Tφ+ψ1
and Tφ+ψ2

are hyponormal then, Tφ+aψ1+bψ2
is hyponormal. This leads to our main result, where N is defined as

earlier.

Theorem 3.6. Let (λl)N≤l≤N1 be any finite sequence of complex numbers such that
∑

N≤l≤N1

|λl| ≤ 1, and

set g =
∑

N≤l≤N1

λl
q
l
zl. Then, we have TgTg − TgTg ≤ TzqTzq − TzqTzq on A2

α,β.

4. Conclusions

The other results of Choe and Lee [2] can be generalized and this could be addressed in a future
work. Hyponormality on the punctured disk is a very recent subject of interest and much remains to be
done on this. We hope this paves the way for further works.
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