Research article

Stability and bifurcation analysis of a discrete-time plant-herbivore model with harvesting effect

  • Received: 26 March 2024 Revised: 06 June 2024 Accepted: 12 June 2024 Published: 20 June 2024
  • MSC : 39A28, 39A30

  • The dynamics of plant-herbivore interactions are essential for understanding ecosystem stability and resilience. This article investigated the effects of incorporating a harvesting effect on the dynamics of a discrete-time plant-herbivore system. An analysis was performed to determine the existence and stability of fixed points. In addition, studies have shown that the system experienced transcritical, period-doubling, and Neimark-Sacker bifurcations. Moreover, we provided numerical simulations to substantiate our theoretical results. Our research indicated that harvesting in excessive amounts may have negative effects on the populations of both plants and herbivores. However, when harvesting was done at moderate levels, it promoted the coexistence and stability of both populations. The findings of our analysis provided a deep understanding of the intricate dynamics of ecological systems and underscored the need to use sustainable harvesting methods for the management and preservation of ecosystems.

    Citation: Mohammed Alsubhi, Rizwan Ahmed, Ibrahim Alraddadi, Faisal Alsharif, Muhammad Imran. Stability and bifurcation analysis of a discrete-time plant-herbivore model with harvesting effect[J]. AIMS Mathematics, 2024, 9(8): 20014-20042. doi: 10.3934/math.2024976

    Related Papers:

  • The dynamics of plant-herbivore interactions are essential for understanding ecosystem stability and resilience. This article investigated the effects of incorporating a harvesting effect on the dynamics of a discrete-time plant-herbivore system. An analysis was performed to determine the existence and stability of fixed points. In addition, studies have shown that the system experienced transcritical, period-doubling, and Neimark-Sacker bifurcations. Moreover, we provided numerical simulations to substantiate our theoretical results. Our research indicated that harvesting in excessive amounts may have negative effects on the populations of both plants and herbivores. However, when harvesting was done at moderate levels, it promoted the coexistence and stability of both populations. The findings of our analysis provided a deep understanding of the intricate dynamics of ecological systems and underscored the need to use sustainable harvesting methods for the management and preservation of ecosystems.



    加载中


    [1] D. Choquenot, J. Parkes, Setting thresholds for pest control: How does pest density affect resource viability?, Biol. Conserv., 99 (2001), 29–46. https://doi.org/10.1016/S0006-3207(00)00186-5 doi: 10.1016/S0006-3207(00)00186-5
    [2] L. Edelstein-Keshet, Mathematical theory for plant-herbivore systems, J. Math. Biol., 24 (1986), 25–58. https://doi.org/10.1007/bf00275719 doi: 10.1007/bf00275719
    [3] E. P. Holland, R. P. Pech, W. A. Ruscoe, J. P. Parkes, G. Nugent, R. P. Duncan, Thresholds in plant-herbivore interactions: predicting plant mortality due to herbivore browse damage, Oecologia, 172 (2013), 751–766. https://doi.org/10.1007/s00442-012-2523-5 doi: 10.1007/s00442-012-2523-5
    [4] Z. Feng, Z. Qiu, R. Liu, D. L. DeAngelis, Dynamics of a plant-herbivore-predator system with plant-toxicity, Math. Biosci., 229 (2011), 190–204. https://doi.org/10.1016/j.mbs.2010.12.005 doi: 10.1016/j.mbs.2010.12.005
    [5] K. C. Abbott, G. Dwyer, Food limitation and insect outbreaks: complex dynamics in plant-herbivore models, J. Anim. Ecol., 76 (2007), 1004–1014. https://doi.org/10.1111/j.1365-2656.2007.01263.x doi: 10.1111/j.1365-2656.2007.01263.x
    [6] G. Sui, M. Fan, I. Loladze, Y. Kuang, The dynamics of a stoichiometric plant-herbivore model and its discrete analog, Math. Biosci. Eng., 4 (2007), 29–46. https://doi.org/10.3934/mbe.2007.4.29 doi: 10.3934/mbe.2007.4.29
    [7] Y. Kang, D. Armbruster, Y. Kuang, Dynamics of a plant-herbivore model, J. Biol. Dynam., 2 (2008), 89–101. https://doi.org/10.1080/17513750801956313 doi: 10.1080/17513750801956313
    [8] Q. Din, A. A. Elsadany, H. Khalil, Neimark-Sacker bifurcation and chaos control in a fractional-order plant-herbivore model, Discrete Dyn. Nat. Soc., 2017 (2017), 6312964. https://doi.org/10.1155/2017/6312964 doi: 10.1155/2017/6312964
    [9] M. S. Khan, M. Samreen, M. Ozair, T. Hussain, E. M. Elsayed, J. F. Gomez-Aguilar, On the qualitative study of a two-trophic plant-herbivore model, J. Math. Biol., 85 (2022), 34. https://doi.org/10.1007/s00285-022-01809-0 doi: 10.1007/s00285-022-01809-0
    [10] E. Beso, S. Kalabusic, E. Pilav, Food-limited plant-herbivore model: bifurcations, persistence, and stability, Math. Biosci., 370 (2024), 109157. https://doi.org/10.1016/j.mbs.2024.109157 doi: 10.1016/j.mbs.2024.109157
    [11] M. S. Shabbir, Q. Din, M. D. la Sen, J. F. Gómez-Aguilar, Exploring dynamics of plant-herbivore interactions: bifurcation analysis and chaos control with Holling type-Ⅱ functional response, J. Math. Biol., 88 (2024), 8. https://doi.org/10.1007/s00285-023-02020-5 doi: 10.1007/s00285-023-02020-5
    [12] Z. Feng, D. L. DeAngelis, Mathematical models of plant-herbivore interactions, Chapman and Hall/CRC, 2017. https://doi.org/10.1201/9781315154138
    [13] S. Kartal, A. Debbouche, Dynamics of a plant-herbivore model with differential-difference equations, Cogent Mathematics, 3 (2016), 1136198. https://doi.org/10.1080/23311835.2015.1136198 doi: 10.1080/23311835.2015.1136198
    [14] E. Beso, S. Kalabusic, E. Pilav, A. Bilgin, Dynamics of a plant-herbivore model subject to Allee effects with logistic growth of plant biomass, Int. J. Bifurcat. Chaos, 33 (2023), 2330026. https://doi.org/10.1142/s0218127423300264 doi: 10.1142/s0218127423300264
    [15] Q. Din, Global behavior of a plant-herbivore model, Adv. Differ. Equ., 2015 (2015), 119. https://doi.org/10.1186/s13662-015-0458-y doi: 10.1186/s13662-015-0458-y
    [16] A. Q. Khan, J. Ma, D. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci., 39 (2016), 185–198. https://doi.org/10.1016/j.cnsns.2016.02.037 doi: 10.1016/j.cnsns.2016.02.037
    [17] M. Y. Hamada, Dynamical analysis of a discrete-time plant-herbivore model, Arab. J. Math., 13 (2024), 121–131. https://doi.org/10.1007/s40065-023-00442-z doi: 10.1007/s40065-023-00442-z
    [18] T. Saha, M. Bandyopadhyay, Dynamical analysis of a plant-herbivore model bifurcation and global stability, J. Appl. Math. Comput., 19 (2005), 327–344. https://doi.org/10.1007/bf02935808 doi: 10.1007/bf02935808
    [19] Y. Li, Z. Feng, R. Swihart, J. Bryant, N. Huntly, Modeling the impact of plant toxicity on plant-herbivore dynamics, J. Dyn. Diff. Equat., 18 (2006), 1021–1042. https://doi.org/10.1007/s10884-006-9029-y doi: 10.1007/s10884-006-9029-y
    [20] C. Castillo-Chavez, Z. Feng, W. Huang, Global dynamics of a plant-herbivore model with toxin-determined functional response, SIAM J. Appl. Math., 72 (2012), 1002–1020. https://doi.org/10.1137/110851614 doi: 10.1137/110851614
    [21] E. M. Elsayed, Q. Din, Period-doubling and Neimark-Sacker bifurcations of plant-herbivore models, Adv. Differ. Equ., 2019 (2019), 271. https://doi.org/10.1186/s13662-019-2200-7 doi: 10.1186/s13662-019-2200-7
    [22] Q. Din, M. S. Shabbir, M. A. Khan, K. Ahmad, Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response, J. Biol. Dynam., 13 (2019), 481–501. https://doi.org/10.1080/17513758.2019.1638976 doi: 10.1080/17513758.2019.1638976
    [23] S. Kalabusic, E. Pilav, Bifurcations, permanence and local behavior of the plant-herbivore model with logistic growth of plant biomass, Qual. Theory Dyn. Syst., 21 (2022), 26. https://doi.org/10.1007/s12346-022-00561-6 doi: 10.1007/s12346-022-00561-6
    [24] L. J. Allen, M. J. Strauss, H. G. Thorvilson, W. N. Lipe, A preliminary mathematical model of the apple twig borer (Coleoptera: Bostrichidae) and grapes on the texas high plains, Ecol. Model., 58 (1991), 369–382. https://doi.org/10.1016/0304-3800(91)90046-4 doi: 10.1016/0304-3800(91)90046-4
    [25] L. J. Allen, M. K. Hannigan, M. J. Strauss, Mathematical analysis of a model for a plant-herbivore system, Bull. Math. Biol., 55 (1993), 847–864. https://doi.org/10.1016/S0092-8240(05)80192-2 doi: 10.1016/S0092-8240(05)80192-2
    [26] H. P. Benoit, D. P. Swain, Impacts of environmental change and direct and indirect harvesting effects on the dynamics of a marine fish community, Can. J. Fish. Aquat. Sci., 65 (2008), 2088–2104. https://doi.org/10.1139/f08-112 doi: 10.1139/f08-112
    [27] S. A. Khamis, J. M. Tchuenche, M. Lukka, M. Heilio, Dynamics of fisheries with prey reserve and harvesting, Int. J. Comput. Math., 88 (2011), 1776–1802. https://doi.org/10.1080/00207160.2010.527001 doi: 10.1080/00207160.2010.527001
    [28] C. K. Yosi, R. J. Keenan, J. C. Fox, Forest dynamics after selective timber harvesting in Papua New Guinea, Forest Ecol. Manag., 262 (2011), 895–905. https://doi.org/10.1016/j.foreco.2011.06.007 doi: 10.1016/j.foreco.2011.06.007
    [29] D. N. Rasquinha, D. R. Mishra, Impact of wood harvesting on mangrove forest structure, composition and biomass dynamics in india, Estuar. Coast. Shelf Sci., 248 (2021), 106974. https://doi.org/10.1016/j.ecss.2020.106974 doi: 10.1016/j.ecss.2020.106974
    [30] R. Ahmed, Complex dynamics of a fractional-order predator-prey interaction with harvesting, Open Journal of Discrete Applied Mathematics, 3 (2020), 24–32. https://doi.org/10.30538/psrp-odam2020.0040 doi: 10.30538/psrp-odam2020.0040
    [31] Y. Tian, H. M. Li, The study of a predator-prey model with fear effect based on state-dependent harvesting strategy, Complexity, 2022 (2022), 9496599. https://doi.org/10.1155/2022/9496599 doi: 10.1155/2022/9496599
    [32] M. Imran, M. B. Almatrafi, R. Ahmed, Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with harvesting effect, Commun. Math. Biol. Neurosci., 2024 (2024), 11. https://doi.org/10.28919/cmbn/8313 doi: 10.28919/cmbn/8313
    [33] M. Virtala, Optimal harvesting of a plant-hervibore system: lichen and reindeer in northern Finland, Ecol. Model., 60 (1992), 233–255. https://doi.org/10.1016/0304-3800(92)90035-d doi: 10.1016/0304-3800(92)90035-d
    [34] M. D. Asfaw, S. M. Kassa, E. M. Lungu, Co-existence thresholds in the dynamics of the plant-herbivore interaction with Allee effect and harvest, Int. J. Biomath., 11 (2018), 1850057. https://doi.org/10.1142/s1793524518500572 doi: 10.1142/s1793524518500572
    [35] M. Xiao, J. Cao, Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator-prey model with linear harvesting rate: analysis and computation, Math. Comput. Model., 50 (2009), 360–379. https://doi.org/10.1016/j.mcm.2009.04.018 doi: 10.1016/j.mcm.2009.04.018
    [36] L. Ji, C. Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge, Nonlinear Anal.-Real, 11 (2010), 2285–2295. https://doi.org/10.1016/j.nonrwa.2009.07.003 doi: 10.1016/j.nonrwa.2009.07.003
    [37] D. Jana, R. Agrawal, R. K. Upadhyay, G. Samanta, Ecological dynamics of age selective harvesting of fish population: maximum sustainable yield and its control strategy, Chaos Soliton. Fract., 93 (2016), 111–122. https://doi.org/10.1016/j.chaos.2016.09.021 doi: 10.1016/j.chaos.2016.09.021
    [38] A. Xiao, C. Lei, Dynamic behaviors of a non-selective harvesting single species stage-structured system incorporating partial closure for the populations, Adv. Differ. Equ., 2018 (2018), 245. https://doi.org/10.1186/s13662-018-1709-5 doi: 10.1186/s13662-018-1709-5
    [39] L. J. S. Allen, An introduction to mathematical biology, Pearson/Prentice Hall, 2007.
    [40] Q. Din, Neimark-Sacker bifurcation and chaos control in Hassell-Varley model, J. Differ. Equ. Appl., 23 (2017), 741–762. https://doi.org/10.1080/10236198.2016.1277213 doi: 10.1080/10236198.2016.1277213
    [41] Q. Din, M. I. Khan, A discrete-time model for consumer-resource interaction with stability, bifurcation and chaos control, Qual. Theor. Dyn. Syst., 20 (2021), 56. https://doi.org/10.1007/s12346-021-00488-4 doi: 10.1007/s12346-021-00488-4
    [42] A. A. Khabyah, R. Ahmed, M. S. Akram, S. Akhtar, Stability, bifurcation, and chaos control in a discrete predator-prey model with strong Allee effect, AIMS Mathematics, 8 (2023), 8060–8081. https://doi.org/10.3934/math.2023408 doi: 10.3934/math.2023408
    [43] R. Ahmed, M. B. Almatrafi, Complex dynamics of a predator-prey system with Gompertz growth and herd behavior, Int. J. Anal. Appl., 21 (2023), 100. https://doi.org/10.28924/2291-8639-21-2023-100 doi: 10.28924/2291-8639-21-2023-100
    [44] R. Ahmed, M. Rafaqat, I. Siddique, M. A. Arefin, Complex dynamics and chaos control of a discrete-time predator-prey model, Discrete Dyn. Nat. Soc., 2023 (2023), 8873611. https://doi.org/10.1155/2023/8873611 doi: 10.1155/2023/8873611
    [45] A. C. J. Luo, Regularity and complexity in dynamical systems, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-1524-4
    [46] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2
    [47] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer, 2003. https://doi.org/10.1007/b97481
    [48] W. Yao, X. Li, Complicate bifurcation behaviors of a discrete predator-prey model with group defense and nonlinear harvesting in prey, Appl. Anal., 102 (2023), 2567–2582. https://doi.org/10.1080/00036811.2022.2030724 doi: 10.1080/00036811.2022.2030724
    [49] P. A. Naik, M. Amer, R. Ahmed, S. Qureshi, Z. Huang, Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect, Math. Biosci. Eng., 21 (2024), 4554–4586. https://doi.org/10.3934/mbe.2024201 doi: 10.3934/mbe.2024201
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(727) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog