Research article Special Issues

Existence of solution for a Langevin equation involving the $ \psi $-Hilfer fractional derivative: A variational approach

  • Received: 19 October 2024 Revised: 12 December 2024 Accepted: 03 January 2025 Published: 10 January 2025
  • MSC : 26A33, 34A08, 35J20

  • This study examines the existence of a solution for a nonvariational Langevin equation that involves the $ \psi $-Hilfer fractional derivative. More specifically, we apply the mountain pass theorem, and then an iterative approach to establish the existence of a solution for the problem.

    Citation: Lamya Almaghamsi, Aeshah Alghamdi, Abdeljabbar Ghanmi. Existence of solution for a Langevin equation involving the $ \psi $-Hilfer fractional derivative: A variational approach[J]. AIMS Mathematics, 2025, 10(1): 534-550. doi: 10.3934/math.2025024

    Related Papers:

  • This study examines the existence of a solution for a nonvariational Langevin equation that involves the $ \psi $-Hilfer fractional derivative. More specifically, we apply the mountain pass theorem, and then an iterative approach to establish the existence of a solution for the problem.



    加载中


    [1] P. Kumar, V. S. Erturk, A. Yusuf, S. Kumar, Fractional time-delay mathematical modeling of oncolytic virotherapy, Chaos Solition Fract., 150 (2021), 111–123. https://doi.org/10.1016/j.chaos.2021.111123 doi: 10.1016/j.chaos.2021.111123
    [2] S. Purohit, S. Kalla, On fractional partial differential equations related to quantum mechanics, J. Phys. A, 44 (2011), 1–8. https://doi.org/10.1088/1751-8113/44/4/045202 doi: 10.1088/1751-8113/44/4/045202
    [3] X. Zhang, D. Boutat, D. Liu, Applications of fractional operator in image processing and stability of control systems, Fractal Fract., 7 (2023), 359. https://doi.org/10.3390/fractalfract7050359 doi: 10.3390/fractalfract7050359
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B.V., 207 (2006).
    [5] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Amsterdam: Elsevier, 1974.
    [6] R. Almeida, A Caputo fractional derivative of a function with respect to an other function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [7] M. Chamekh, A. Ghanmi, S. Horrigue, Iterative approximation of positive solutions for fractional boundary value problem on the half-line, Filomat, 32 (2018), 6177–6187. https://doi.org/10.2298/FIL1818177C doi: 10.2298/FIL1818177C
    [8] A. Ghanmi, S. Horrigue, Existence of positive solutions for a coupled system of nonlinear fractional differential equations, Ukr. Math. J.+, 71 (2019), 39–49. https://doi.org/10.1007/s11253-019-01623-w doi: 10.1007/s11253-019-01623-w
    [9] A. Ghanmi, S. Horrigue, Existence results for nonlinear boundary value problems, Filomat, 32 (2018), 609–618. https://doi.org/10.2298/FIL1802609G doi: 10.2298/FIL1802609G
    [10] G. Wang, A. Ghanmi, S. Horrigue, S. Madian, Existence result and uniqueness for some fractional problem, Mathematics, 7 (2019), 516. https://doi.org/10.3390/math7060516 doi: 10.3390/math7060516
    [11] A. Ghanmi, Z. Zhang, Nehari manifold and multiplicity results for a class of fractional boundary value problems with $p$-Laplacian, B. Korean Math. Soc., 56 (2019), 1297–1314. http://doi.org/10.4134/BKMS.b181172 doi: 10.4134/BKMS.b181172
    [12] A. Ghanmi, M. Kratou, K. Saoudi, A multiplicity results for a singular problem involving a Riemann-Liouville fractional derivative, Filomat, 32 (2018), 653–669. https://doi.org/10.2298/FIL1802653G doi: 10.2298/FIL1802653G
    [13] C. T. Ledesma, Mountain pass solution for a fractional boundary value problem, J. Fract. Calc. Appl., 5 (2014), 1–10. https://doi.org/10.1145/2602969 doi: 10.1145/2602969
    [14] S. Horrigue, Existence results for a class of nonlinear Hadamard fractional with $p$-Laplacian operator differential eEquations, J. Math. Stat., 17 (2021), 61–72. https://doi.org/10.3844/jmssp.2021.61.72 doi: 10.3844/jmssp.2021.61.72
    [15] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 1999. https://doi.org/10.1142/9789812817747
    [16] R. Alsaedi, A. Ghanmi, Variational approach for the Kirchhoff problem involving the $p$-Laplace operator and the $\psi$-Hilfer derivative, Math. Method. Appl. Sci., 46 (2023), 9286–9297. https://doi.org/10.1002/mma.9053 doi: 10.1002/mma.9053
    [17] S. Horrigue, H. Almuashi, A. A. Alnashry, Existence results for some $\psi$-Hilfer iterative approximation, Math. found. Comput., 7 (2024), 531–543. https://doi.org/10.3934/math.2021244 doi: 10.3934/math.2021244
    [18] A. Nouf, W. M. Shammakh, A. Ghanmi, Existence of solutions for a class of boundary value problems involving Riemann Liouville derivative with respect to a function, Filomat, 37 (2023), 1261–1270. https://doi.org/10.2298/FIL2304261N doi: 10.2298/FIL2304261N
    [19] J. V. D. C. Sousa, J. Zuo, D. O'Regand, The Nehari manifold for a $\psi$-Hilfer fractional $p$-Laplacian, Appl. Anal., 101 (2022), 5076–5106. https://doi.org/10.1080/00036811.2021.1880569 doi: 10.1080/00036811.2021.1880569
    [20] J. V. D. C. Sousa, L. S. Tavares, C. E. T. Ledesma, A variational approach for a problem involving a $\psi$-Hilfer fractional operator, J. Appl. Anal. Comput., 11 (2021), 1610–1630.
    [21] L. Paul, L'evolution de l'espace et du temps, Scientia, 10 (1911), 31–54.
    [22] B. Ahmad, J. Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equat., 2010 (2010), 10. https://doi.org/10.1155/2010/649486 doi: 10.1155/2010/649486
    [23] B. Ahmad, J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal.-Real, 13 (2012), 599–606. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052
    [24] L. Almaghamsi, Weak solution for a fractional Langevin inclusion with the Katugampola-Caputo fractional derivative, Fractal Fract., 7 (2023), 174. https://doi.org/10.3390/fractalfract7020174 doi: 10.3390/fractalfract7020174
    [25] S. Lim, M. Li, L. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. https://doi.org/10.1016/j.physleta.2008.08.045 doi: 10.1016/j.physleta.2008.08.045
    [26] C. Torres, Existence of solution for fractional Langevin equation: Variational approach, Electron. J. Qual. Theo., 54 (2014), 1–14. https://doi.org/10.1007/s15027-014-0320-2 doi: 10.1007/s15027-014-0320-2
    [27] W. Xie, J. Xiao, Z. Luo, Existence of solutions for fractional boundary value problem with nonlinear derivative dependence, Abstr. Appl. Anal., 2014 (2014), 1–8. https://doi.org/10.1155/2014/812910 doi: 10.1155/2014/812910
    [28] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and functions, Yverdon: Gordon and Breach, 1993.
    [29] J. V. D. C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [30] C. E. T. Ledesma, J. V. D. C. Sousa, Fractional integration by parts and Sobolev-type inequalities for $\psi$-fractional operators, Math. Meth. Appl. Sci., 45 (2022), 9945–9966. https://doi.org/10.1002/mma.8348 doi: 10.1002/mma.8348
    [31] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Func. Anal., 14 (1973), 349–381. https://doi.org/10.1108/eb022220 doi: 10.1108/eb022220
    [32] J. Bellazini, N. Visciglia, Max-min characterization of the mountain pass energy level for a class of variational problems, P. Am. Math. Soc., 138 (2010), 3335–3343. https://doi.org/10.1090/S0002-9939-10-10415-8 doi: 10.1090/S0002-9939-10-10415-8
    [33] A. Canino, B. Sciunzi, A. Trombetta, Existence and uniqueness for $p$-Laplace equations involving singular nonlinearities, Nonlinear Differ. Equ. Appl., 8 (2016), 23. https://doi.org/10.1007/s00030-016-0361-6 doi: 10.1007/s00030-016-0361-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(334) PDF downloads(47) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog