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1. Introduction

Fractional calculus is a field of mathematical analysis that generalizes the concepts of derivatives
and integrals to non-integer orders. It has become increasingly important in numerous scientific and
engineering disciplines. As a result, many researchers have investigated its applications across various
domains, such as virotherapy (see [1]), quantum mechanics (see [2]), image processing (see [3]), other
applications in physics and engineering can be found in the papers [4, 5]. Given their significance,
numerous researchers have focused on addressing problems involving various fractional derivatives.
For example, the works [6] (for the ψ-Caputo derivative), the papers [7–10] (Riemann-Liouville
derivative combined with fixed points theorems), the papers [11–13] (Riemann-Liouville derivative
combined with the variational method), and the work [14] (Hadamard derivative).

Recently, numerous papers have focused on studying problems involving the ψ-Hilfer fractional
derivative, which was introduced in the work of Hilfer [15]. The ψ-Hilfer fractional derivative is
based on the generalized Hilfer fractional derivative, which itself combines elements of the Riemann-
Liouville and Caputo derivatives. The Hilfer fractional derivative is a more flexible formulation
than other fractional derivatives because it incorporates both the memory of a function and its local
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behavior, thus providing more control over the fractional-order derivative. This fractional derivative
type generalizes and extends several classical definitions in fractional calculus and has been applied to
model complex processes in physics, biology, and engineering; see, for instance, [16–20].

In this work, we continue to address a problem involving the ψ-Hilfer fractional derivatives yDν,β,ψ
T

and 0Dν,β,ψ
y , which were introduced in Section 2. More precisely, we prove the existence of solutions

for the following problem:
yDν,β,ψ

T

(
0Dν,β,ψ

y u(y)
)

= g(y, u(y), 0Dν,β,ψ
y u(y)), y ∈ (0,T ),

Iν(ν−1);ψ
0+ u(0) = Iν(ν−1);ψ

T u(T ) = 0,
(1.1)

where ν ∈
(

1
2 , 1

)
, ψ is a positive increasing function on [0,T ] with T > 0 and ψ′(y) , 0 for all y ∈ (0,T ).

The function g is a measurable function on [0,T ] × R × R and satisfies additional conditions that will
be stated later. We note that a function u ∈ E is a solution for problem (1.1), if for every v ∈ E we have∫ T

0
0Dν,β,ψ

y u(y) 0Dν,β,ψ
y v(y) dy =

∫ T

0
g(y, u(y), 0Dν,β,ψ

y u(y))v(y) dy,

where E is a functional space introduced in Section 2. We also note that, in the special case where

g(y, u(y), 0Dν,β,ψ
y u(y)) = f (y, u(y)) − λ 0Dν,β,ψ

y u(y),

the problem (1.1) simplifies to a Langevin equation.
It is worth mentioning that the Langevin equation is the fundamental equation in the fields of

statistical mechanics and stochastic processes. It describes the time evolution of a system’s state,
incorporating both deterministic and random forces. Albert Einstein provided a theoretical framework
for Brownian motion, which refers to the random motion of particles suspended in a fluid. His work
established the foundation for understanding the stochastic behavior of particles. Paul [21] further
extended the concept of Brownian motion by introducing both a deterministic force and a random
force (the thermal or stochastic force). He formulated what is now known as the Langevin equation,
which describes the dynamics of a particle in a fluid, accounting for both frictional drag and random
thermal fluctuations.

The Langevin equation is given by:

m
d2ϕ(y)

dx2 = −γ
dϕ(y)

dx
+ η(y),

where m is the mass of the particle, γ is the damping coefficient, and η(y) represents the random
force following a Gaussian distribution. Recently, significant attention has been given to the
study of Langevin equations with various fractional derivatives. Ahmad et al. [22, 23] applied
a combination of the contraction mapping principle and the Krasnoselskii fixed point theorem
to establish the existence of solutions for certain Langevin equations involving Caputo fractional
derivatives. Almaghamsi [24] investigated weak solutions for boundary value problems with fractional
Langevin inclusions, employing the Katugampola-Caputo derivative and Pettis integrability, and
utilizing the Mönch fixed point theorem along with weak noncompactness. Lim et al. [25] examined
a Langevin problem involving the Weyl and Riemann-Liouville fractional derivatives, focusing on
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Gaussian processes and their relationship with fractional Brownian motion, thereby proving several
existing results. Most recently, Torres [26] studied a Langevin equation incorporating the Riemann-
Liouville fractional derivative. He combined a variational method with an iterative technique to
demonstrate the existence of solutions for the problem under study.

In this paper, we further explore a Langevin problem involving the ψ-Hilfer fractional derivative by
using the study of Xie et al. [27]. It is important to point out that the presence of the third variable in
the function g prevents the application of variational methods to solve this problem. So, we begin by
replacing the third variable of a function g with a fixed function in an appropriate function space, and in
Section 3, we employ the mountain pass theorem to establish the existence of solutions for this auxiliary
problem. Following this, in Section 4 we construct a sequence of solutions for related auxiliary
problems and demonstrate that this sequence converges to a solution for the original problem (1.1).
It is noted that our study generalizes other works in the literature; for example, if ψ(x) = x and β = 1,
then we obtain the result of Toress [26]. To our knowledge, no known work in the literature utilizes the
theory of [27] to problems involving fractional derivatives with respect to a function.

2. Preliminaries and variational setting

In this section, we present some foundational background and theoretical concepts related to the
ψ-Hilfer fractional derivative, which will be applied throughout this paper. We begin by recalling the
definition of the fractional integral, as introduced by Kilbas et al. [4] and Samko et al. [28]. In this
section, η and β are positive real numbers, Γ represents the Euler gamma function, and for −∞ ≤ a <
b ≤ ∞, [a, b] denotes a finite or infinite interval on the real line. Moreover, ψ is assumed to be an
increasing positive function on [a, b], with a continuously differentiable derivative ψ′(y) , 0 on (a, b).

Definition 2.1. [4,28] Let χ be an integrable function on the interval [a, b], and let ψ ∈ C1([a, b],R) be
a strictly increasing function with ψ′(y) , 0 for all y ∈ [a, b]. The fractional integrals of χ with respect
to ψ, on the left and right sides, are given by:

Iβ,ψa+ χ(y) :=
1

Γ(β)

∫ y

a
ψ′(σ)(ψ(y) − ψ(σ))β−1χ(σ) dσ, (2.1)

and

Iβ,ψb− χ(y) :=
1

Γ(β)

∫ b

y
ψ′(σ)(ψ(σ) − ψ(y))β−1χ(σ) dσ. (2.2)

Definition 2.2. [19, 29] Let χ be a function that is integrable over the interval [a, b], and let ψ ∈
C1([a, b],R) be a strictly increasing function such that ψ′(y) , 0 for all y ∈ [a, b]. Below is the
definition of the left and right ψ-Hilfer fractional derivatives of type 0 ≤ β ≤ 1:

HD
η,β,ψ
a+ χ(y) := Iβ(m−η),ψ

a+

(
1

ψ′(y)
d
dy

)m

I(1−β)(m−η),ψ
a+ χ(y),

and

HD
η,β,ψ
b− χ(y) := Iβ(m−η),ψ

b−

(
1

ψ′(y)
d
dy

)m

I(1−β)(m−η),ψ
b− χ(y),

where m is an integer satisfying m − 1 < η ≤ m.
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It is important to highlight that the ψ-Hilfer fractional derivatives generalize previous concepts,
including the ψ-Riemann-Liouville and ψ-Caputo fractional derivatives. Specifically, the following
remark holds:

Remark 2.3. The following statements are true:

(i) From the ψ-Hilfer fractional derivatives, as β tends to zero,we obtain the ψ-Riemann-Liouville
fractional derivatives:

D
η,ψ
a+ χ(y) =

(
1

ψ′(y)
d
dy

)m

Im−η,ψ
a+ χ(y),

and

D
η,ψ
b− χ(y) =

(
−

1
ψ′(y)

d
dy

)m

Im−η,ψ
b− χ(y).

(ii) As β tends to 1, the ψ-Hilfer fractional derivatives become equivalent to the ψ-Caputo fractional
derivatives, defined as:

CD
η,ψ
a+ χ(y) = Im−η,ψ

a+

(
1

ψ′(y)
d
dy

)m

χ(y),

and

CD
η,ψ
b− χ(y) = Im−η,ψ

b−

(
−

1
ψ′(y)

d
dy

)m

χ(y).

(iii) ψ-Hilfer fractional derivatives are directly related to ψ-Riemann-Liouville fractional derivatives.
Below are the specific results:

HD
η,β,ψ
a+ χ(y) = Iξ−η,ψa+ D

ξ,ψ
a+ χ(y),

and

HD
η,β,ψ
b− χ(y) = Iξ−η,ψb− D

ξ,ψ
b− χ(y),

where ξ = η + β(m − η).

We note that we have an analogue integration by parts formula; for more details, the interested
readers can consult [30, Theorem 12].

For 1 ≤ s ≤ ∞, Ls(a, b) denotes the set of all measurable functions χ on [a, b], such that∫ b

a
|χ(σ)|s dσ < ∞. Define the norm as

‖χ‖Ls(a,b) =

(∫ b

a
|χ(σ)|s dσ

) 1
s

, and ‖χ‖∞ = ess sup
a≤σ≤b

|χ(σ)|.

Remark 2.4. [13, 19] Let 0 < η ≤ 1, s ≥ 1, and q = s
s−1 . For each χ ∈ Ls(a, b), the following

properties hold:
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(i) The operator Iη,ψa+ χ is bounded in Ls(a, b), and the following inequality holds:

‖Iη,ψa+ χ‖Ls(a,b) ≤
(ψ(b) − ψ(a))η

Γ(η + 1)
‖χ‖Ls(a,b).

(ii) If 1
s < η < 1, then Iη,ψa+ χ is Hölder continuous on [a, b] with an exponent of η − 1

s .
(iii) If 1

s < η < 1, then lim
y→a

Iη,ψa+ χ(y) = 0, meaning that Iη,ψa+ χ can be continuously extended to zero at

y = a. Therefore, Iη,ψa+ χ is continuous on [a, b], and the following bound holds:

‖Iη,ψa+ χ‖∞ ≤
(ψ(b) − ψ(a))η−

1
s

Γ(η) ((η − 1)q + 1)
1
q

‖χ‖Ls(a,b).

To establish the variational structure for problem (1.1), we introduce the fractional derivative space
Eη,β,ψ, defined as the closure of C∞c ([0,T ],R) under the norm:

‖w‖Eη,β,ψ
p

=
(
‖w‖p

Lp(0,T ) + ‖0D
η,β,ψ
t w‖p

Lp(0,T )

) 1
p
.

The space Eη,ψ can be characterized as follows:

Eη,β,ψ
p =

{
v ∈ Lp([0,T ],R) : Dη,β,ψ

0+ v ∈ Lp([0,T ],R), Iβ(β−1);ψ
0+ (0) = Iβ(β−1);ψ

T (T ) = 0
}
.

Remark 2.5. [13,19] If 0 < η ≤ 1 and 0 ≤ β ≤ 1, then for all χ ∈ Eη,β,ψ
s , the following properties hold:

(i) The space Eη,β,ψ
s is a Banach space that is both reflexive and separable.

(ii) If 1 − η > 1
s or η > 1

s , we have the inequality:

‖χ‖Ls(0,T ) ≤
(ψ(T ) − ψ(0))η

Γ(η + 1)
‖D

η,β,ψ
0+ χ‖Ls(0,T ).

(iii) If 1
s < η and q = s

s−1 , then the following holds:

‖χ‖∞ ≤
(ψ(T ) − ψ(0))η−

1
s

Γ(η) ((η − 1)q + 1)
1
q

‖D
η,β,ψ
0+ χ‖Ls(0,T ).

Let
E := Eη,β,ψ

2 ,

which defines a Hilbert space, and from the last remark, E can be equipped with the following
equivalent norm:

‖χ‖ = ‖0D
η,β,ψ
t χ‖L2(0,T ).

Furthermore, based on Remark 2.5, there exists a constant c1 > 0, such that for each χ ∈ E, we have

‖χ‖∞ ≤ c1‖χ‖. (2.3)
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3. Auxiliary problem

In this section, we fix a function ϕ in the space E and consider the following auxiliary problem:

(Pϕ)

 yDν,β,ψ
T

(
0Dν,β,ψ

y u(y)
)

= g(y, u(y), 0Dν,β,ψ
y ϕ(y)), y ∈ (0,T ),

Iν(ν−1);ψ
0+ u(0) = Iν(ν−1);ψ

T u(T ) = 0.

We assume the following conditions:
(H1) We assume that there exist q > 1, 0 < δ < Γ(ν+1)

(ψ(T )−ψ(0))ν , and Cδ > 0 such that for all (y, ξ, η) ∈
[0,T ] × R × R, the following inequalities hold:

|g(y, ξ, η)| ≤ δ|ξ| + Cδ|ξ|
q,

and

|G(y, ξ, η)| ≤
δ

2
|ξ|2 +

Cδ

q + 1
|ξ|q+1.

(H2) There exist σ > 2, and positive constants c1 and c2, such that for all real values ξ and η, and for
each y ∈ [0,T ], we have

G(y, ξ, η) ≥ c1|ξ|
σ − c2,

where G is the antiderivative of the function g with respect to its second variable and equals zero when
evaluated at zero.
(H3) The function g satisfies the Ambrosetti-Rabinowitz condition, which means that there exists a
constant C > 0 such that for all (y, η) ∈ [0,T ] × R, we have:

0 < σG(y, ξ, η) ≤ ξg(y, ξ, η), for all |ξ| ≥ C.

The first main result of this work is stated in the following theorem.

Theorem 3.1. Under the conditions (H1)–(H3), problem (Pϕ) has a nontrivial solution.

To prove the existence of solutions for problem (Pϕ), we will make use of the following theorem.

Theorem 3.2. [31] Let X be a real Banach space, and let J ∈ C1(E,R) be a functional that satisfies
the Palais-Smale condition. Assume the following:

(i) J(0) = 0.
(ii) There exist constants ρ > 0 and χ > 0 such that J(z) ≥ χ for all z ∈ E with ‖z‖ = ρ.

(iii) There exists z1 ∈ E with ‖z1‖ ≥ ρ such that J(z1) < 0.

Then, J has a critical value c ≥ σ. Furthermore, c can be expressed as

c = inf
γ∈Γ

max
z∈[0,1]

J(γ(z)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = z1}.
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We recall that a functional J satisfies the Palais-Smale condition if any sequence {um} ⊂ X such that
J(um) is bounded and J′(um)→ 0 in X′, possesses a convergent subsequence.

The energy functional associated with problem (Pϕ) is defined as:

Lϕ(u) =
1
2

∫ T

0
|0Dν,β,ψ

s u(s)|2 ds −
∫ T

0
G(s, u(s), 0Dν,β,ψ

s ϕ(s)) ds,

where G(s, ξ, η) =
∫ ξ

0
g(s, σ, η) dσ.

Since the function G is continuous, then we get Lϕ ∈ C1(E,R). Moreover, for all pairs (u, v) ∈ E2,
we have:

〈L′ϕ(u), v〉 =

∫ T

0
0Dν,β,ψ

s u(s) · 0Dν,β,ψ
s v(s) ds −

∫ T

0
g(s, u(s), 0Dν,β,ψ

s ϕ(s))v(s) ds. (3.1)

Lemma 3.3. Under assumptions (H1)–(H3), the functional Lϕ satisfies the Palais-Smale condition.

Proof. Let {uk} be a sequence in E such that

Lϕ(uk) is bounded, and L′ϕ(uk)→ 0 as k → ∞.

We first observe that, based on this information, there exists a constant C0 > 0 such that

|Lϕ(uk)| ≤ C0 and |〈L′ϕ(uk), uk〉| ≤ C0 for all k ∈ N. (3.2)

Next, we show that the sequence {uk} is bounded. To do so, let r ∈
(

1
σ
, 1

2

)
. Using assumption (H3), we

can derive the necessary bounds for any k ∈ N.

C0 + rC0 ≥ Lϕ(uk)− ≺ L′ϕ(uk), uk �

= (
1
2
− r)‖uk‖

2

+

∫ T

0

(
ruk(s)g(s, uk(s), 0Dν,β,ψ

s ϕ(s)) −G(s, uk(s), 0Dν,β,ψ
s ϕ(s))

)
ds

≥ (
1
2
− r)‖uk‖

2

+

∫
|uk |≤C

(
ruk(s)g(s, uk(s), 0Dν,β,ψ

s ϕ(s)) −G(s, uk(s), 0Dν,β,ψ
s ϕ(s))

)
ds

+

∫
|uk |≥C

(
ruk(s)g(s, uk(s), 0Dν,β,ψ

s ϕ(s)) −G(s, uk(s), 0Dν,β,ψ
s ϕ(s))

)
ds

≥ (
1
2
− r)‖uk‖

2 + C1

+(rσ − 1)
∫
|uk |≥C

G(s, uk(s), 0Dν,β,ψ
s ϕ(s)) ds

≥ (
1
2
− r)‖uk‖

2 + C1. (3.3)

Since r < 1
2 , it is clear that the sequence {uk} is bounded. Moreover, since E is a reflexive space, this

implies that, after possibly passing to a subsequence, there exists u∗ ∈ E such that uk converges weakly
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to u∗ in E. Additionally, due to the compact embedding, uk converges strongly to u∗ in C([0,T ]). Now,
we will show that {uk} converges strongly to u∗ in E.
From Eq (3.1), we obtain

≺ L′ϕ(uk), uk − u∗ � =

∫ T

0
0Dν,β,ψ

s uk(s) 0Dν,β,ψ
s (uk − u∗)(s) ds

−

∫ T

0
g(s, uk(s), 0Dν,β,ψ

s ϕ(s))(uk − u∗)(s) ds,

and

≺ L′ϕ(u∗), uk − u∗ � =

∫ T

0
0Dν,β,ψ

s u∗(s) 0Dν,β,ψ
s (uk − u∗)(s) ds

−

∫ T

0
g(s, u∗(s), 0Dν,β,ψ

s ϕ(s))(uk − u∗)(s) ds.

So, we obtain
≺ L′ϕ(uk) − L′ϕ(u∗), uk − u∗ �= ‖uk − u∗‖2 − Ik, (3.4)

where

Ik =

∫ T

0

(
g(s, uk(s), 0Dν,β,ψ

s ϕ(s)) − g(s, u∗(s), 0Dν,β,ψ
s ϕ(s))

)
(uk − u∗)(s) ds.

From hypothesis (H2) and the fact that uk converges strongly to u∗ in C([0,T ]), we obtain

lim
k→∞

Ik = 0. (3.5)

Next, since L′ϕ(uk)→ 0 and uk − u∗ is bounded, then we obtain

lim
k→∞
≺ L′ϕ(uk), uk − u∗ �= 0.

Moreover, from the fact that uk converges strongly to u∗ in C([0,T ])

lim
k→∞
≺ L′ϕ(u∗), uk − u∗ �= 0.

Hence, one has
lim
k→∞
≺ L′ϕ(uk) − L′ϕ(u∗), uk − u∗ �= 0. (3.6)

In conclusion, by utilizing Eqs (3.4)–(3.6), we can confirm that the sequence {uk} converges strongly
to u∗ in E.

�

Lemma 3.4. Under assumption (H1)–(H3), if q > 1, then, there exist ρ > 0 and $ > 0 such that
Lϕ(z) ≥ $ for every z ∈ E with ‖z‖ = ρ.

Proof. Let z ∈ E, and δ > 0. Then using Remark 2.5, hypothesis (H1), and the decreasing embedding
of the Lebegue spaces, we have

Lϕ(z) =
1
2
‖z‖2 −

∫ T

0
G(s, u(s), 0Dν,β,ψ

s z(s))ds
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≥
1
2
‖z‖2 −

δ

2
‖z‖L2(0,T ) −

Cδ

q + 1
‖z‖q+1

Lq+1(0,T )

≥
1
2
‖z‖2 −

δ(ψ(T ) − ψ(0))ν

2Γ(ν + 1)
‖z‖2 −

TCδ (ψ(T ) − ψ(0))ν−
1
2

(q + 1)Γ(ν)(ν − 1)
1
2

‖z‖q+1

≥ ‖z‖2
1
2
−
δ(ψ(T ) − ψ(0))ν

2Γ(ν + 1)
−

TCδ (ψ(T ) − ψ(0))ν−
1
2

(q + 1)Γ(ν)(ν − 1)
1
2

‖z‖q−1

 . (3.7)

Now, if we fix δ < Γ(ν+1)
(ψ(T )−ψ(0))ν and

ρ <

(1
2
−
δ(ψ(T ) − ψ(0))ν

2Γ(ν + 1)

)
(q + 1)Γ(ν)(ν − 1)

1
2

TCδ (ψ(T ) − ψ(0))ν−
1
2


1

q−1

.

Then, we obtain

$ = ρ2

1
2
−
δ(ψ(T ) − ψ(0))ν

2Γ(ν + 1)
−

TCδ (ψ(T ) − ψ(0))ν−
1
2

(q + 1)Γ(ν)(ν − 1)
1
2

ρq−1

 > 0.

So, we can see from (3.7) that if ‖z‖ = ρ, then Lϕ(z) > 0. Thus Lemma 3.4 has been proven. �

Lemma 3.5. Under assumptions (H1)–(H3), there exists z1 ∈ E with ‖z1‖ ≥ ρ such that Lϕ(z1) < 0.

Proof. Let ξ > 0 and z ∈ E, then from hypothesis (H2), we obtain

Lϕ(ξz) =
ξ2

2
‖z‖2 −

∫ T

0
G(s, ξz(s), 0Dν,β,ψ

s ϕ)ds

≤
ξ2

2
‖z‖ − c1ξ

σ‖z‖σLσ(0,T ) + c3T. (3.8)

Since we have σ > 2, then
lim
ξ→∞

Lϕ(ξu) = −∞.

So, we can choose ξ large enough and z1 = ξu so that ‖z1‖ ≥ ρ and Lϕ(z1) < 0. �

Proof of Theorem 3.1. The proof of Theorem 3.1 naturally follows from the preceding lemmas in
this section. Specifically, Lemma 3.3 confirms that Lϕ satisfies the Palais-Smale condition, while
Lemma 3.4 ensures that condition (ii) of Theorem 3.2 is met. Furthermore, Lemma 3.5 guarantees
that condition (iii) of Theorem 3.2 is also fulfilled. Finally, noting that Lϕ(0) = 0, we infer
from Theorem 3.2 that Lϕ possesses a critical point, which corresponds to a weak solution of the
problem (Pϕ). Additionally, Lemma 3.4 confirms that this solution is nontrivial.

For the remainder of this paper, a solution to problem (Pϕ) will be referred to as S (Pϕ).

4. Main result and its proof

In this part, we introduce the second primary finding of this paper, which deals with the existence of
solutions for the problem denoted as (1.1). The demonstration relies on the application of the outcome
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established in Section 3 alongside some iterative techniques. Before revealing the main conclusion of
this paper, we assume that the function g adheres to the condition outlined below:
(H4) There exists R > 0 small enough, such that for every pair (η, η1) belonging to the real numbers R,
the following holds true:

|g(s, ξ, η) − g(s, ξ1, η)| ≤ α1|ξ − ξ1|, ∀ (s, ξ, ξ1) ∈ [0,T ] × [−R,R] × [−R,R],

and
|g(s, ξ, η) − g(s, ξ, η1)| ≤ α2|η − η1|, ∀(s, ξ) ∈ [0,T ] × [−R,R],

where α1 and α2 are positive constants satisfying the condition:

0 < θ := α2
Γ(ν + 1)(ψ(T ) − ψ(0))ν

(Γ(ν + 1))2 − α1(ψ(T ) − ψ(0))2ν < 1. (4.1)

The second result of this work is the following theorem.

Theorem 4.1. Under the Assumptions (H1)–(H4), problem (1.1) admits a nontrivial solution.

Proof. To prove Theorem 4.1, we begin by remarking that, since the hypotheses (H1)–(H3) are satisfied,
then, the sequence {uk} ⊂ E defined by{

u0 is a fixed function in E,
uk+1 = S (Puk), ∀ k ∈ N,

is well defined, moreover, for each k ∈ N, we have∫ T

0
|sD

ν,β,ψ
T (uk(s))|2 ds =

∫ T

0
g(s, uk(s), 0Dν,β,ψ

s uk−1(s))uk(s) ds. (4.2)

Let 0 < δ < Γ(ν+1)
(ψ(T )−ψ(0))ν , then from Eq (4.2) and hypothesis (H1), we obtain

‖uk‖
2 ≤ δ‖u‖2L2([0,T ]) + Cδ‖u‖

q+1
Lq+1([0,T ])

≤
δ(ψ(T ) − ψ(0))ν

Γ(ν + 1)
‖uk‖

2 +
TCδ (ψ(T ) − ψ(0))ν−

1
2

Γ(ν)(ν − 1)
1
2

‖uk‖
q+1.

So, we obtain (
1 −

δ(ψ(T ) − ψ(0))ν

Γ(ν + 1)

)
‖uk‖

2 ≤
TCδ (ψ(T ) − ψ(0))ν−

1
2

Γ(ν)(ν − 1)
1
2

‖uk‖
q+1.

Since q > 1, then it follows that

‖uk‖ ≥

 Γ(ν)(ν − 1)
1
2

TCδ (ψ(T ) − ψ(0))ν−
1
2

(
1 −

δ(ψ(T ) − ψ(0))ν

Γ(ν + 1)

)
1

q−1

:= M0 > 0. (4.3)

On the other hand, from the characterization of the mountain pass level (see [32]), we have

|Luk−1(uk)| ≤ max
s≥0

Luk−1(sz),
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for some z ∈ E with ‖z‖ = 1.
Now, from the last inequality, and as in Eq (3.8), we obtain

|Luk−1(uk)| ≤
s2

2
‖z‖ − c1sσ‖z‖σLσ(0,T ) + c2T := f (s).

Since f is continuous on [0,∞), f (0) = 0, and lim
s→∞

f (s) = −∞. Then we can deduce that f is upper
bounded, so there exists M > 0 such that |Luk−1(uk)| ≤ M. Therefore, as in Eq (3.3), we obtain

(
1
2
− r)‖uk‖

2 + C1 ≤ Luk−1(uk)− ≺ L′uk−1
(uk), uk �

≤ M− ≺ L′uk−1
(uk), uk � . (4.4)

Now, from the fact that uk+1 is a critical point of the functional Luk , and uk is a critical point of the
functional Luk−1 , one has

≺ L′uk
(uk+1), uk+1 − uk �= 0, and ≺ L′uk−1

(uk), uk+1 − uk �= 0. (4.5)

So, by combining the last information with Eq (4.4), we can deduce the existence of M1 > 0, such that

‖uk‖ ≤ M1. (4.6)

Now, by combining Eq (4.6) with Eq (4.3), we get

0 < M0 ≤ ‖uk‖ ≤ M1. (4.7)

So, if we choose R = c1M1, where R is given by hypothesis (H4), and c1 is given in Eq (2.3), then using
Eq (4.7), we obtain

‖uk‖∞ ≤ c1‖uk‖ ≤ c1M1 = R.

Next, from Eq (4.5), we deduce that

≺ L′uk
(uk+1) − L′uk−1

(uk), uk+1 − uk �= 0,

which yields to

‖uk+1 − uk‖
2 =

∫ T

0
g
(
(s, uk+1(s), 0Dv,β;ψ

s uk(s)
)

(uk+1 − uk) ds

−

∫ T

0
g
(
s, uk(s), 0Dv,β;ψ

s uk−1(s))
)

(uk+1 − uk) ds.
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So, from Remark 2.5, assumption (H4), and the Hölder inequality, we obtain

‖uk+1 − uk‖
2 =

∫ T

0
g
(
(s, uk+1(s), 0Dν,β;ψ

s uk(s)) − g(s, uk(s), 0Dν,β;ψ
s uk(s))

)
(uk+1 − uk)ds

+

∫ T

0
g
(
(s, uk(s), 0Dν,β;ψ

s uk(s)) − g(s, uk(s), 0Dν,β;ψ
s uk−1(s))

)
(uk+1 − uk)ds

≤ α1‖uk+1 − un‖
2
L2(0,T ) + α2

∫ T

0
| 0Dν,β;ψ

s (uk(s) − uk−1(s))|(uk+1 − uk)ds

≤ α1
(ψ(T ) − ψ(0))2ν

(Γ(ν + 1))2 ‖uk+1 − uk‖
2 + α2‖uk − uk−1‖ ‖uk+1 − uk‖L2(0,T )

≤ α1
(ψ(T ) − ψ(0))2ν

(Γ(ν + 1))2 ‖uk+1 − uk‖
2

+ α2
(ψ(T ) − ψ(0))ν

Γ(ν + 1)
‖uk − uk−1‖ ‖‖uk+1 − uk‖.

Hence, we deduce that

‖uk+1 − uk‖ ≤ θ‖uk − uk−1‖,

where θ is given by Eq (4.1).
Based on the previous inequality, we can infer that the sequence {uk} is a Cauchy sequence in the

Banach space E. Consequently, there is an element u∗ ∈ E to which the sequence {un} converges in E.
To conclude the proof, it is enough to demonstrate that u∗ solves problem (1.1). To achieve this, it is
necessary to show that as k approaches infinity, we get

∫ T

0
g(s, uk+1(s), 0Dν,β;ψ

s uk(s))v(s) ds→
∫ T

0
g(s, u∗(s), 0Dν,β;ψ

s u∗(s))v(s) ds. (4.8)

Again, from Remark 2.5, assumption (H4), and the Hölder inequality, we conclude that

∫ T

0

(
g(s, uk+1(s), 0Dν,β;ψ

s uk(s)) − g(s, u∗(s), 0Dν,β;ψ
s u∗(s))

)
v(s) ds

=

∫ T

0

(
g(s, uk+1(s), 0Dν,β;ψ

s uk(s)) − g(s, u∗(s), 0Dν,β;ψ
s uk(s))

)
v(s)ds

+

∫ T

0

(
g(s, u∗(s), 0Dν,β;ψ

s uk(s)) − g(s, u∗(s), 0Dν,β;ψ
s u∗(s))

)
v(s)ds

≤ α1‖uk+1 − u∗‖L2(0,T )‖v‖L2(0,T ) + α2‖uk − u∗‖‖v‖L2(0,T )

≤ ‖v‖L2(0,T )

(
α1

(ψ(T ) − ψ(0))ν

Γ(ν + 1)
‖uk+1 − u∗‖ + α2‖uk − u∗‖

)
.

Hence, we deduce that Eq (4.8) holds, and consequently the proof of Theorem 4.1 is completed. �

AIMS Mathematics Volume 10, Issue 1, 534–550.



546

5. Example

In this section, we present the following illustrative example:

(P)


HD

6
10 ,

1
2

1−

(
HD

6
10 ,

1
2

0+ u(y)
)

= g
(
y, u(y),H D

6
10 ,

1
2

0+ u(y)
)
, y ∈ (0, 1),

I−0.24,y
0+

u(0) = I−0.24,y
1 u(

1
2

) = 0,

where HD
6

10
1− and HD

6
10 ,

1
2

0+ are the left and right Hilfer derivatives of order 6
10 and type 1

2 , that is, ψ(x) = x,
ν = 6

10 ,T = 1, β = 1
2 , and

g(y, ξ, η) = (c1 − c2sinµ)|ξ|ξ,

with c1 > c2 are positive constants that satisfy an appropriate condition fixed later.
A simple calculation shows that, for any δ > 0 small enough, we have

|g(y, ξ, η)| ≤ (c1 + c2)|ξ|2

≤ δ|ξ| + (c1 + c2)|ξ|2.

This means that the first inequality in hypothesis (H1) is satisfied with q = 2 > 1. On the other hand,
we have

|G(y, ξ, η)| ≤
c1 + c2

3
|ξ|3

≤
δ

2
|ξ|2 +

c1 + c2

3
|ξ|3.

So, hypothesis (H1) holds.
Now, since −1 ≤ sinµ ≤ 1, then for any c > 0, we obtain

G(y, ξ, η) ≥
c1 − c2

3
|ξ|3 − c,

which means that hypothesis (H1) is also satisfied with σ = 3 > 2.
It is not difficult to see that

ξg(y, ξ, η) = 3G(y, ξ, η) ≥ 3G(y, ξ, η),

so hypothesis (H3) is satisfied.
Next, we prove that hypothesis (H4) holds. For this, we recall from [33, Lemme 2.1] the following
elementary inequality: ∣∣∣|a|p−2a − |b|p−2b

∣∣∣ ≤ C(|a| + |b|)p−2|a − b|,∀ p > 1, (5.1)

provided that |a| + |b| , 0.
Now, we applied equation for p = 2, a = ξ and b = ξ1, we get

||ξ|ξ − |ξ1|ξ1| ≤ C|ξ − ξ1|.

This implies that

|g(y, ξ, η) − g(y, ξ1, η)| ≤ C(c1 + c2)|ξ − ξ1|.
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on the other hand, we have

|g(y, ξ, η) − g(y, ξ, η1)| ≤ c2ξ
2|sinη − sinη1|

≤ c2R2|η − η1|.

To finish, it suffices to prove that Eq (4.1) holds. From the above inequalities, we can see that α1 =

C(c1 + c2) and α2 = c2R2. Since ψ(1) = 1 and ψ(0) = o, then we obtain

θ =
c2R2Γ(8

5 )(
Γ( 8

5 )
)2
−C(c1 + c2)

.

If we choose c1 + c2 <
(Γ( 8

5 ))2

C and

0 < R <


(
Γ(8

5 )
)2
−C(c1 + c2)

c2Γ( 8
5 )


1
2

,

then, all hypotheses of Theorem 4.1 hold. Hence, problem (P) admits a nontrivial solution.

6. Conclusions

In this work, we investigated the existence of solutions for a nonvariational problem involving
the ψ-Hilfer fractional derivative. Precisely, we fixed a function in the functional space to transform
a nonvariational problem into a variational auxiliary problem; after that, we used a mountain pass
theorem to prove that the auxiliary problem admits a nontrivial solution. Later, we fix a function
u0 ∈ E, and we find a function u1 as a solution for the auxiliary problem associated with u0. by the
same way, we determine a function u2 as a solution for the auxiliary problem associated with u1, so
a sequence {uk} is constructed. Finally, we proved that this sequence is convergent and its limit is
a nontrivial solution for our studied problem. This idea was first introduced by Xie et al. [27] and
used later by Torres [26] for the particular case when ψ(x) = x and β = 1. We hope to use this idea
for a capillarity problem involving the ψ-Hilfer derivative and variable exponents, which will also be
submitted to Aims Mathematics.

Author contributions

Lamya Almaghamsi: Conceptualization, writing-review & editing, funding acquisition; Aeshah
Alghamdi: Conceptualization, writing-review & editing; Abdeljabbar Ghanmi: Conceptualization;
Abdeljabbar Ghanmi: Resources. All authors have read and approved the final version of the
manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 10, Issue 1, 534–550.



548

Conflict of interest

The authors declare that they have no competing interests.

References

1. P. Kumar, V. S. Erturk, A. Yusuf, S. Kumar, Fractional time-delay mathematical
modeling of oncolytic virotherapy, Chaos Solition Fract., 150 (2021), 111–123.
https://doi.org/10.1016/j.chaos.2021.111123

2. S. Purohit, S. Kalla, On fractional partial differential equations related to quantum mechanics, J.
Phys. A, 44 (2011), 1–8. https://doi.org/10.1088/1751-8113/44/4/045202

3. X. Zhang, D. Boutat, D. Liu, Applications of fractional operator in image processing and stability
of control systems, Fractal Fract., 7 (2023), 359. https://doi.org/10.3390/fractalfract7050359

4. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B.V., 207 (2006).

5. K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and
integration to arbitrary order, Amsterdam: Elsevier, 1974.

6. R. Almeida, A Caputo fractional derivative of a function with respect to an other function,
Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006

7. M. Chamekh, A. Ghanmi, S. Horrigue, Iterative approximation of positive solutions
for fractional boundary value problem on the half-line, Filomat, 32 (2018), 6177–6187.
https://doi.org/10.2298/FIL1818177C

8. A. Ghanmi, S. Horrigue, Existence of positive solutions for a coupled system of nonlinear fractional
differential equations, Ukr. Math. J.+, 71 (2019), 39–49. https://doi.org/10.1007/s11253-019-
01623-w

9. A. Ghanmi, S. Horrigue, Existence results for nonlinear boundary value problems, Filomat, 32
(2018), 609–618. https://doi.org/10.2298/FIL1802609G

10. G. Wang, A. Ghanmi, S. Horrigue, S. Madian, Existence result and uniqueness for some fractional
problem, Mathematics, 7 (2019), 516. https://doi.org/10.3390/math7060516

11. A. Ghanmi, Z. Zhang, Nehari manifold and multiplicity results for a class of fractional
boundary value problems with p-Laplacian, B. Korean Math. Soc., 56 (2019), 1297–1314.
http://doi.org/10.4134/BKMS.b181172

12. A. Ghanmi, M. Kratou, K. Saoudi, A multiplicity results for a singular problem
involving a Riemann-Liouville fractional derivative, Filomat, 32 (2018), 653–669.
https://doi.org/10.2298/FIL1802653G

13. C. T. Ledesma, Mountain pass solution for a fractional boundary value problem, J. Fract. Calc.
Appl., 5 (2014), 1–10. https://doi.org/10.1145/2602969

14. S. Horrigue, Existence results for a class of nonlinear Hadamard fractional with
p-Laplacian operator differential eEquations, J. Math. Stat., 17 (2021), 61–72.
https://doi.org/10.3844/jmssp.2021.61.72

AIMS Mathematics Volume 10, Issue 1, 534–550.

https://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111123
https://dx.doi.org/https://doi.org/10.1088/1751-8113/44/4/045202
https://dx.doi.org/https://doi.org/10.3390/fractalfract7050359
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2016.09.006
https://dx.doi.org/https://doi.org/10.2298/FIL1818177C
https://dx.doi.org/https://doi.org/10.1007/s11253-019-01623-w
https://dx.doi.org/https://doi.org/10.1007/s11253-019-01623-w
https://dx.doi.org/https://doi.org/10.2298/FIL1802609G
https://dx.doi.org/https://doi.org/10.3390/math7060516
https://dx.doi.org/http://doi.org/10.4134/BKMS.b181172
https://dx.doi.org/https://doi.org/10.2298/FIL1802653G
https://dx.doi.org/https://doi.org/10.1145/2602969
https://dx.doi.org/https://doi.org/10.3844/jmssp.2021.61.72


549

15. R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 1999.
https://doi.org/10.1142/9789812817747

16. R. Alsaedi, A. Ghanmi, Variational approach for the Kirchhoff problem involving the p-
Laplace operator and the ψ-Hilfer derivative, Math. Method. Appl. Sci., 46 (2023), 9286–9297.
https://doi.org/10.1002/mma.9053

17. S. Horrigue, H. Almuashi, A. A. Alnashry, Existence results for some ψ-Hilfer iterative
approximation, Math. found. Comput., 7 (2024), 531–543. https://doi.org/10.3934/math.2021244

18. A. Nouf, W. M. Shammakh, A. Ghanmi, Existence of solutions for a class of boundary value
problems involving Riemann Liouville derivative with respect to a function, Filomat, 37 (2023),
1261–1270. https://doi.org/10.2298/FIL2304261N

19. J. V. D. C. Sousa, J. Zuo, D. O’Regand, The Nehari manifold for a ψ-Hilfer fractional p-Laplacian,
Appl. Anal., 101 (2022), 5076–5106. https://doi.org/10.1080/00036811.2021.1880569

20. J. V. D. C. Sousa, L. S. Tavares, C. E. T. Ledesma, A variational approach for a problem involving
a ψ-Hilfer fractional operator, J. Appl. Anal. Comput., 11 (2021), 1610–1630.

21. L. Paul, L’evolution de l’espace et du temps, Scientia, 10 (1911), 31–54.

22. B. Ahmad, J. Nieto, Solvability of nonlinear Langevin equation involving two fractional
orders with Dirichlet boundary conditions, Int. J. Differ. Equat., 2010 (2010), 10.
https://doi.org/10.1155/2010/649486

23. B. Ahmad, J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation
involving two fractional orders in different intervals, Nonlinear Anal.-Real, 13 (2012), 599–606.
https://doi.org/10.1016/j.nonrwa.2011.07.052

24. L. Almaghamsi, Weak solution for a fractional Langevin inclusion with the Katugampola-Caputo
fractional derivative, Fractal Fract., 7 (2023), 174. https://doi.org/10.3390/fractalfract7020174

25. S. Lim, M. Li, L. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008),
6309–6320. https://doi.org/10.1016/j.physleta.2008.08.045

26. C. Torres, Existence of solution for fractional Langevin equation: Variational approach, Electron.
J. Qual. Theo., 54 (2014), 1–14. https://doi.org/10.1007/s15027-014-0320-2

27. W. Xie, J. Xiao, Z. Luo, Existence of solutions for fractional boundary value
problem with nonlinear derivative dependence, Abstr. Appl. Anal., 2014 (2014), 1–8.
https://doi.org/10.1155/2014/812910

28. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and
functions, Yverdon: Gordon and Breach, 1993.

29. J. V. D. C. Sousa, E. C. de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci.,
60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005

30. C. E. T. Ledesma, J. V. D. C. Sousa, Fractional integration by parts and Sobolev-
type inequalities for ψ-fractional operators, Math. Meth. Appl. Sci., 45 (2022), 9945–9966.
https://doi.org/10.1002/mma.8348

31. A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical points theory and applications,
J. Func. Anal., 14 (1973), 349–381. https://doi.org/10.1108/eb022220

AIMS Mathematics Volume 10, Issue 1, 534–550.

https://dx.doi.org/https://doi.org/10.1142/9789812817747
https://dx.doi.org/https://doi.org/10.1002/mma.9053
https://dx.doi.org/https://doi.org/10.3934/math.2021244
https://dx.doi.org/https://doi.org/10.2298/FIL2304261N
https://dx.doi.org/https://doi.org/10.1080/00036811.2021.1880569
https://dx.doi.org/https://doi.org/10.1155/2010/649486
https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2011.07.052
https://dx.doi.org/https://doi.org/10.3390/fractalfract7020174
https://dx.doi.org/https://doi.org/10.1016/j.physleta.2008.08.045
https://dx.doi.org/https://doi.org/10.1007/s15027-014-0320-2
https://dx.doi.org/https://doi.org/10.1155/2014/812910
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2018.01.005
https://dx.doi.org/https://doi.org/10.1002/mma.8348
https://dx.doi.org/https://doi.org/10.1108/eb022220


550

32. J. Bellazini, N. Visciglia, Max-min characterization of the mountain pass energy level for a class of
variational problems, P. Am. Math. Soc., 138 (2010), 3335–3343. https://doi.org/10.1090/S0002-
9939-10-10415-8

33. A. Canino, B. Sciunzi, A. Trombetta, Existence and uniqueness for p-Laplace equations involving
singular nonlinearities, Nonlinear Differ. Equ. Appl., 8 (2016), 23. https://doi.org/10.1007/s00030-
016-0361-6

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 1, 534–550.

https://dx.doi.org/https://doi.org/10.1090/S0002-9939-10-10415-8
https://dx.doi.org/https://doi.org/10.1090/S0002-9939-10-10415-8
https://dx.doi.org/https://doi.org/10.1007/s00030-016-0361-6
https://dx.doi.org/https://doi.org/10.1007/s00030-016-0361-6
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries and variational setting
	Auxiliary problem
	Main result and its proof
	Example
	Conclusions

