Research article Special Issues

Analysis of superquadratic fuzzy interval valued function and its integral inequalities

  • Received: 09 October 2024 Revised: 07 December 2024 Accepted: 20 December 2024 Published: 10 January 2025
  • MSC : 03E72, 26A33, 26A51, 26D10, 26D15, 26E50

  • Superquadratic function is a generalization of convex functions. Results based on superquadratic functions are more refined than the results obtained using the notion of convexity. This work aims to provide a new class of superquadratic functions called superquadratic fuzzy-interval-valued function (superquadrtic $ F_{I.V.F} $) and demonstrate its properties using fuzzy order relations. In the space of fuzzy intervals, this relation is also termed as the Kulisch-Miranker order relation defined on such a space level-wise. By leveraging the definition and features of superquadrtic $ F_{I.V.F} $, we come up with improved integral inequalities such as Hermite-Hadamard (H.H) and Jensen type for superquadrtic $ F_{I.V.F} $. Furthermore, we offer fractional representation of inequalities of H.H's types for superquadrtic $ F_{I.V.F} $ with respect to fuzzy interval Riemann-Liouville fractional integral operators. These findings are further validated through specific numerical examples and graphical illustrations, which demonstrate the practical relevance and applicability of the results. We have no doubt that these results will open new avenues for researchers to further explore the notion of superuadraticity.

    Citation: Dawood Khan, Saad Ihsan Butt, Asfand Fahad, Yuanheng Wang, Bandar Bin Mohsin. Analysis of superquadratic fuzzy interval valued function and its integral inequalities[J]. AIMS Mathematics, 2025, 10(1): 551-583. doi: 10.3934/math.2025025

    Related Papers:

  • Superquadratic function is a generalization of convex functions. Results based on superquadratic functions are more refined than the results obtained using the notion of convexity. This work aims to provide a new class of superquadratic functions called superquadratic fuzzy-interval-valued function (superquadrtic $ F_{I.V.F} $) and demonstrate its properties using fuzzy order relations. In the space of fuzzy intervals, this relation is also termed as the Kulisch-Miranker order relation defined on such a space level-wise. By leveraging the definition and features of superquadrtic $ F_{I.V.F} $, we come up with improved integral inequalities such as Hermite-Hadamard (H.H) and Jensen type for superquadrtic $ F_{I.V.F} $. Furthermore, we offer fractional representation of inequalities of H.H's types for superquadrtic $ F_{I.V.F} $ with respect to fuzzy interval Riemann-Liouville fractional integral operators. These findings are further validated through specific numerical examples and graphical illustrations, which demonstrate the practical relevance and applicability of the results. We have no doubt that these results will open new avenues for researchers to further explore the notion of superuadraticity.



    加载中


    [1] S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [2] S. I. Butt, J. Pe$\breve{{\rm{c}}}$arić, A. Vukelić, Generalization of Popoviciu-type inequalities via Fink's identity, Mediterr. J. Math., 13 (2016), 1495–1511. https://doi.org/10.1007/s00009-015-0573-8 doi: 10.1007/s00009-015-0573-8
    [3] Y. M. Qin, Integral and discrete inequalities and their applications, Birkhäuser, 2016. https://doi.org/10.1007/978-3-319-33301-4
    [4] P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Singapore: Birkhäuser, 2018. https://doi.org/10.1007/978-981-13-3013-1
    [5] S. I. Butt, M. K. Bakula, D. Pečarić, J. Pečarić, Jensen-Grüss inequality and its applications for the Zipf-Mandelbrot law, Math. Methods Appl. Sci., 44 (2021), 1664–1673. https://doi.org/10.1002/mma.6869 doi: 10.1002/mma.6869
    [6] S. I. Butt, Generalized Jensen-Hermite-Hadamard Mercer type inequalities for generalized strongly convex functions on fractal sets, Turkish J. Sci., 8 (2024), 51–63.
    [7] J. E. N. Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne's thread or Charlotte's spiderweb? Adv. Math. Models Appl., 5 (2020), 176–191.
    [8] M. Vivas-Cortez, P. Kérus, J. E. N. Valdés, Some generalized Hermite-Hadamard-Fejér inequality for convex functions, Adv. Differ. Equ., 2021 (2021), 1–11. https://doi.org/10.1186/s13662-021-03351-7 doi: 10.1186/s13662-021-03351-7
    [9] R. E. Moore, Interval analysis, Englewood Cliffs: Prentice Hall, 1966.
    [10] Y. Chalco-Cano, A. Flores-Franulič, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472.
    [11] A. Flores-Franulič, Y. Chalco-Cano, H. Román-Flores, An Ostrowski type inequality for interval-valued functions, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013, 1459–1462. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608617
    [12] T. M. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Sets Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012
    [13] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 1–14. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [14] M. B. Khan, M. A. Noor, P. O. Mohammed, J. L. G. Guirao, K. I. Noor, Some integral inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 14 (2021), 158. https://doi.org/10.1007/s44196-021-00009-w doi: 10.1007/s44196-021-00009-w
    [15] D. L. Zhang, C. M. Guo, D. G. Chen, G. J. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [16] S. Markov, Calculus for interval functions of a real variable, Computing, 22 (1979), 325–337.
    [17] M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Solitons Fract., 164 (2022), 112692. https://doi.org/10.1016/j.chaos.2022.112692 doi: 10.1016/j.chaos.2022.112692
    [18] T. S. Du, T. C. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Solitons Fract., 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
    [19] M. B. Khan, H. A. Othman, G. Santos-García, T. Saeed, M. S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, Chaos Solitons Fract., 169 (2023), 113274. https://doi.org/10.1016/j.chaos.2023.113274 doi: 10.1016/j.chaos.2023.113274
    [20] S. Abramovich, G. Jameson, G. Sinnamon, Refining Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie, 47 (2004), 3–14.
    [21] S. Abramovich, G. Jameson, G. Sinnamon, Inequalities for averages of convex and superquadratic functions, J. Inequal. Pure Appl. Math., 5 (2004), 1–14.
    [22] S. Banić, J. Pečarić, S. Varošanec, Superquadratic functions and refinements of some classical inequalities, J. Korean Math. Soc., 45 (2008), 513–525. https://doi.org/10.4134/JKMS.2008.45.2.513 doi: 10.4134/JKMS.2008.45.2.513
    [23] G. Z. Li, F. X. Chen, Hermite-Hadamard type inequalities for superquadratic functions via fractional integrals, Abstr. Appl. Anal., 2014 (2014), 851271. https://doi.org/10.1155/2014/851271 doi: 10.1155/2014/851271
    [24] M. W. Alomari, C. Chesneau, On h-superquadratic functions, Afrika Mat., 33 (2022), 41.
    [25] M. Krnić, H. R. Moradi, M. Sababheh, On logarithmically superquadratic functions, Mediterr. J. Math., 20 (2023), 2–18. https://doi.org/10.21203/rs.3.rs-2730723/v1 doi: 10.21203/rs.3.rs-2730723/v1
    [26] D. Khan, S. I. Butt, Superquadraticity and its fractional perspective via center-radius $cr$-order relation, Chaos Solitons Fract., 182 (2024), 114821. https://doi.org/10.1016/j.chaos.2024.114821 doi: 10.1016/j.chaos.2024.114821
    [27] S. I. Butt, D. Khan, Integral inequalities of $h$-superquadratic functions and their fractional perspective with applications, Math. Methods Appl. Sci., 48 (2025), 1952–1981. https://doi.org/10.1002/mma.10418 doi: 10.1002/mma.10418
    [28] S. Abramovich, J. Barić, J. Pečarić, Fejer and Hermite-Hadamard type inequalities for superquadratic functions, J. Math. Anal. Appl., 344 (2008), 1048–1056. https://doi.org/10.1016/j.jmaa.2008.03.051 doi: 10.1016/j.jmaa.2008.03.051
    [29] S. Abramovich, On superquadraticity, J. Math. Inequal., 3 (2009), 329–339. https://doi.org/10.7153/jmi-03-33 doi: 10.7153/jmi-03-33
    [30] S. I. Bradanović, More accurate majorization inequalities obtained via superquadraticity and convexity with application to entropies, Mediterr. J. Math., 18 (2021), 79. https://doi.org/10.1007/s00009-021-01708-6 doi: 10.1007/s00009-021-01708-6
    [31] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [32] H. Budak, T. Tunc, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [33] S. I. Butt, A. Khan, New fractal-fractional parametric inequalities with applications, Chaos Solitons Fract., 172 (2023), 113529. https://doi.org/10.1016/j.chaos.2023.113529 doi: 10.1016/j.chaos.2023.113529
    [34] X. M. Yuan, H. Budak, T. S. Du, The multi-parametr fractal-fractional inequallities for fractal $(P, m)$-convex functions, Fractals, 32 (2024), 2450025. https://doi.org/10.1142/S0218348X24500257 doi: 10.1142/S0218348X24500257
    [35] T. S. Du, X. M. Yuan, On the parameterized fractal integral inequalities and related applications, Chaos Solitons Fract., 170 (2023), 113375. https://doi.org/10.1016/j.chaos.2023.113375 doi: 10.1016/j.chaos.2023.113375
    [36] J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birkhäuser, 1990.
    [37] B. Bede, Mathematics of fuzzy sets and fuzzy logic, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-35221-8
    [38] T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055
    [39] T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Set Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 doi: 10.1016/j.fss.2017.02.001
    [40] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297–302. https://doi.org/10.1007/s00500-011-0743-y doi: 10.1007/s00500-011-0743-y
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(357) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog