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1. Introduction

The theory of convexity is a dynamic and fascinating area of research, with numerous scholars
contributing innovative approaches to extend and generalize its different forms. This framework
enables the creation of highly efficient numerical algorithms that can address challenges in both pure
and applied sciences. Recently, convexity has seen significant advancements and generalizations,
particularly in its interaction with inequality theories. For example, Dragomir et al. [1] explored novel
inequalities of the H.H type, laying a foundation for subsequent developments. Butt et al. [2] extended
Popoviciu-type inequalities using Fink’s identity, which opened new avenues in generalizing inequality
frameworks. Qin [3] provided an extensive treatment of integral and discrete inequalities, highlighting
their practical applications in various mathematical domains. Agarwal et al. [4] further advanced
mathematical inequalities with a focus on their applications in real-world problems. Bakula et al. [5]
applied Jensen-Griiss inequalities to analyze the Zipf-Mandelbrot law, demonstrating its utility in
statistical modeling. Butt [6] introduced Mercer-type inequalities for generalized strongly convex
functions on fractal sets, emphasizing their relevance to complex systems. Meanwhile, Valdés et al. [7]
and Vivas-Cortez et al. [8] investigated H.H type inequalities, presenting generalized forms and
applications that significantly enriched the field.

Decision-making entails determining the best choice in contradictory scenarios that arise in several
aspects of our everyday lives. It is also necessary to study several subjects, such as optimization theory,
operational research, and management science. A choice is made based on a variety of considerations,
including future uncertainty and risk. Decision-making is characterized using a certainty scale that
spans from complete certainty to full uncertainty; this scale is known as the degree of certainty.
There are numerous kinds of decisions, such as, decisions under conflicting situations, decisions
under certainty, decisions under uncertain conditions, decisions under risk, and others. Additionally,
a decision made under uncertainty is classified into numerous sorts. Two of them make optimistic
decisions, while the other makes pessimistic ones. When someone makes an optimistic decision, they
select the best alternative despite some doubt, although occasionally they select the most advantageous
option despite uncertainty. Real numbers often represent deterministic parameters in mathematical
models. Mathematical models may explain specific problems traditionally. However, many uncertain
real-life circumstances exist, particularly in the engineering field or various disciplines of management
science and operations research, where it is extremely difficult to make assumptions about the inputs
which are assumed as real numbers. Certain inaccurate or inexact features are automatically included
into the models since the decision maker must make judgements in the face of ambiguity in these
circumstances. Experts of management sciences and operations research typically employ fuzzy or
stochastic methodologies to deal with imprecise or uncertain parameters. The stochastic technique
treats imprecise parameters as random variables with known probability distributions. In contrast,
fuzzy techniques treat uncertainty as either a fuzzy set with a suitable membership function or a
fuzzy number. In some circumstances, both procedures are used to address imprecise results. In
these approaches, there is a concern about which probability distributions or membership functions
to use. In actuality, it might be difficult to make judgements in an unpredictable setting. To get
around this issue, several researchers have recently defined inaccurate parameters using intervals.
The sequence of intervals plays a crucial role in identifying the best option in decision-making
situations. In recent decades, scholars have presented various mathematical ways to define order
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relations of intervals. These approaches were primarily designed to reformulate or address various
interval-oriented optimization problems. Because their major goal was to develop improved solution
approaches, there were often no detailed discussions regarding the corresponding interval ordering
definition. The researchers concluded the discussions after achieving their goal.

It was Moore in 1969 who established the foundations of interval analysis, and who is considered to
be the first mathematician to have formally used this approach in the automatic analysis of errors [9].
His work was of great pioneering value in giving a systematic method for dealing with uncertainties and
computational inaccuracies, thereby significantly improving the accuracy of numerical computations.
By systematically accounting for errors, Moore’s interval analysis provided a reliable framework
for numerical problem-solving, which sparked great interest among researchers and practitioners
in various scientific disciplines. Interval analysis simply replaces traditional numerical values as
variables with interval numbers which recognize that in most real-world applications, exact values
would not always be available or accessible due to either inaccuracies in measurement, some rounding
approximations, and intrinsic uncertainties. Interval arithmetic is used instead of using standard
arithmetic operations. This approach enables the derivation of tight error bounds and ensures that
all possible results are included, which makes it especially useful in scenarios where accuracy and
reliability are paramount.

Researchers have developed strong relations between convex functions and inequalities in the frame
of interval analysis, resulting in some impressive results. Scholars like Chalco-Cano et al. [10], Flores-
Franuli¢ et al. [11], Costa et al. [12], and others have extended traditional integral inequalities to fuzzy-
valued functions (Fyry) and interval-valued functions (Iyrs). Such efforts have enriched the area by
making classical mathematical outcomes applicable in a wider sense. For instance, Zhao et al. [13]
employed the interval inclusion relation to introduce h-convex Iy and obtained the related inequalities
which gave new information on the connection between convexity and integral analysis. Likewise,
in 2021, Khan et al. [14] further developed this field with the help of an #-convex Iy using the Kulisch-
Miranker order and some related inequalities that were valid only for this class of convex functions.
Further in this direction, Zhang et al. [15] extended their line of research; they explored fuzzy set-
valued functions and derived Jensen’s inequalities, which showed the various flexibility of convexity
ideas in more generalized settings. The collective studies indicate vivid interplay between interval and
fuzzy-valued analysis toward the development of a better platform for further research activities in
mathematical inequalities and related applications.

One should consult the material listed in the sources [16—19] to gain a thorough understanding of
convex Fjyrs, their types, and related inequalities, including fractional extensions utilizing various
fuzzy fractional integral operators.

The refinement brought forth by superquadraticity results in more substantial or improved accuracy
when working with integral inequalities. For instance, the extra formula makes it possible to
compare the integral of a function and the function of the integral more precisely when using Jensen-
type inequalities on superquadratic functions. This refinement is particularly helpful in applied
mathematics, where more accurate estimates enhance models, and in domains such as optimization,
where exact limits are required to get optimum solutions. For the derivation and implementation of
integral inequalities, superquadraticity provides a more reliable framework than convexity, allowing
for more precise and in-depth conclusions that are beneficial for both theoretical study and real-world
applications.
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As explained in [20], Abramovich and associates first proposed the idea of a one-variable
superquadratic function as a modification of a certain class of convex functions. A function | :
[0, 00) — R, is said to exhbit superquadraticity if it fulfills the below mentioned inequality, Y > O,

f(y) 2 100) + G (y —2) +f(ly —2[), Vy 20, (1.1)

where €, € R, is a constant. f exhibits subquadraticity provided “<” in (1.1) flips. When f is
subquadratic, it suggests that —f is superquadratic.

The function f(») = x' might be used as an example. Therefore, the aforementioned function is
referred to as superquadratic for x > 0 and f > 2, but it is regarded as subquadratic for 0 < f < 2.
The constant €, may be expressed for this function as €, = {(x). Furthermore, equality in (1.1) is
maintained at f = 2, which is the point at which subquadratic and superquadratic behavior diverge.

Abramovich et al. have contributed significantly to the definition and advancement of a basic
understanding of superquadratic functions, as documented in [20] and [21]. Equation (1.1), the
condition they created in their work, is a powerful criterion for identifying superquadratic functions.
In fact, this criterion is stronger than the usual convexity requirement and provides a more stringent
test for identifying whether a function is superquadratic. Nevertheless, the superquadratic function
in question needs to be non-negative for (1.1) to hold. In [21], the researchers provided a detailed
explanation of this necessity. Lemma 1.1 further characterizes superquadratic functions by stating
that every randomly selected superquadratic function will inherently satisfy three certain qualities, or
axioms. These premises reinforce the unique behavior of superquadratic functions with respect to
convex functions and a part of the fundamental requirements that they must meet.

Lemma 1.1. If{ : [0, 00) — ‘R exhibits superquadraticity, then:

() 7(0) <0.

(ii) §(0) = /(0) = 0 = § (%) = G, provided f is differentiable at x > 0.
(iii) If T is positive and §(0) = {(0) = 0, then § is convex.

Abramovich et al. earlier created a lemma in [20], which we explore in the following. It explains
how convexity and superquadraticity are related.

Lemma 1.2. If{(0) = §(0) = 0, and | is convex, then { is said to exhibit superquadraticity.

Jensen and H.H integral inequalities are the two significant inequalities that develop and expand
this idea. These inequalities are crucial to understanding superquadratic functions since they not only
capture the essence of superquadraticity but also have numerous applications in other mathematical
studies. Specifically, the classical version of Jensen’s inequality, which is covered below, provides a
crucial understanding of the properties of a superquadratic function. It helps identify these functions’
distinct characteristics and behaviors by offering a criteria that sets them apart.

Theorem 1.1. [21] If a function | exhibits superquadraticity, let x; > 0,0 < A,; < 1, and x = X | A,:%;,
where X A,; = 1, then

i Aoif () 2 §(0) + Ty Ao (e — ). (1.2)

According to their study, Bani¢ and associates created H.H type inequalities especially for
superquadratic functions [22].
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Theorem 1.2. If a function §: I C [0, co[—> R exhibits superquadraticity on I=[a,, b,], where 0 < q, <

b,, then
a, +b, 1 o a, + b,
T( 2 )+b0—ao‘f%f(‘%_ 2 )d%
D,
< iGodn < 1) 2 100) f [(6, — )i — ) + (¢ — 0)i(b, — 2)]doe. (1.3)
bo —Q a, 2 o 0)2

A fundamental definition of superquadratic functions comes from an extended form of Jensen’s
inequality, provided here in its simplest form. This extended inequality serves as a key criterion for
identifying superquadratic functions, so the following definition directly applies to any function that is
superquadratic.

Definition 1.1. If a function § exhibits superquadraticity, then it holds the inequality (1.4).

f((l - /10)%1 + /10%2)
<(1 = 2)T(1) + A,7(%2) — T = Aty — %2]) — (1 = A)F(Aol2e1 — 22]), (1.4)

where YO < A, < 1 and »%1,%, > 0.

For a nonnegative superquadratic function f, the inequality (1.4) clearly represents an extension of
Jensen’s inequality. In this inequality, f is categorized as a subquadratic function if the “<” sign is
reversed. This reversal separates subquadratic behavior from superquadratic behavior by altering the
function’s development characteristics.

Remarkably, the fractional perspective of H.H’s inequality via Riemann-Liouville fractional
integrals provided by the following theorem was developed by Li and his colleague in [23].

Theorem 1.3. If a function T: I C [0,00[— R exhibits superquadraticity and integrability on
I=[qa,,b,], with0 < a, < b, then

0 b() /l() bo 0 b() — —
[ R f (|5 = ) =0+ e = )
(1 +4 ) " 5
<5 e (L) + 30,
f(ao) + T(bo) /10 oo ®—0Q
T2 20, —an ((b Y )f(bf’ ~*)
+ (:__ * )f(% — ) =+ G2 - 0y (1.5)

In (1.5), the symbols 3% .f(x) and I} _f(x) denote the right and left Riemann-Liouville fractional
operators, respectively, with a, > 0, which are outlined below:

3iCe) =

Ao—1
l"(/l)f(% Y iydy, x> a,. (1.6)

Jfe) =

b,
_ A,—1
L) f (y —2)""'f(y)dy, x <D, (L.7)
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where I'(1,) = fooo y*~le7dy is a gamma function.

Alomari and Chesneau in [24] developed a new category of superquadratic functions known as /-
superquadratic functions in an attempt to expand and generalize the idea of superquadratic functions.
They looked into and explained some of its fundamental characteristics. In [25], Krni¢ and his
collaborators presented the idea of a multiplicatively or logarithmically superquadratic function and
developed the required characteristics for it. According to [26], Khan and Butt further investigated
the idea of a center-radius cr-order interval valued superquadratic function, including its fractional
variant. By creating basic and fractional versions of H.H and Fejér type inequalities, Butt and Khan
have further developed the idea of h-superquadraticity (see [27]). These extended inequalities offer
a foundation for a more thorough analysis of h-superquadratic functions, and their applications show
how useful these functions are in real-world situations. Readers interested in superquadratic functions
can learn more about the functions, instances and their uses in the framework of inequality theory by
consulting [28-30] and the sources referenced therein.

Expanding upon earlier studies on convexity, convex F;yr, and superquadraticity, we discovered
that there are still no proven characteristics and inequalities pertaining to superquadratic F;y . This
disparity inspired us to concentrate on these areas and create a brand-new idea of superquadraticity,
known as superquadratic F,yr. Since the superquadratic function and its associated inequalities are
the refinement of the convex function and its associated inequalities, as was previously stated, our
generated idea is the refinement of the convex F;yr notion and its associated findings.

Over the past few years, there has been a significant increase in the use of fractional calculus to
integral inequalities. To proceed in this direction and arrive at new findings in the theory of inequalities,
superquadratic F;yr must incorporate fractional calculus concepts. The superquadratic F;yr and its
inequalities, as well as its fractional version, have not been studied before. To bridge this gap in the
literature, we aim to refine and improve H.H’s type inequalities using fractional calculus, time-scale
calculus, and quantum calculus. We will start the research by combining fractional calculus with the
superquadratic F;yr in order to demonstrate our main findings. These concepts will be covered in the
aforementioned areas in later publications. We advise the reader to go to [31-35] and the references
therein for further findings about the fractional integral operators.

2. Preliminaries

We first develop the concept of superquadratic F,yr, by taking into consideration the following
fundamental mathematics related to fuzzy order relations.

Let K. be designated as the space of intervals of R which are closed as well as bounded, and any
w, € K, can be defined as follows:

W, = [w,,, w,] = {%: w,, <% <w), xR},

0’
with width (w} — w,,). If (W) — w,,) = 0, then w, is termed as degenerate. Here, w},w, € R are
the upper and lower limits of w,, correspondingly. Any x € R can be pointed out as an interval [, x]
with no gape. If (w) — w,,) > 0, then w, is considered as positive. The space of positive intervals is

represented by K and given by

K = {[w,,, w)] : [w,,, w)] € K. A w,, = 0}. (2.1
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For each A, € R, we attain

[Aw,,, Aw)], if A, >0,

Ao = Aol Wo,, W, ] = { [/low:’ /100)0*] » it 4, <0.

Addition and multiplication operations on intervals are defined as follows:

Wy + Vo = [Wo,, W] + [Vo,, Vi = [W,, + Vo, ) + Vi,

Wy X Vo = [W,,, w,] X [V,,,V,]

*
0’

* * *
W, Vo,, W,V,), Max(W,, V., W,V

*
0’

= [I’YLU’Z((_UU* Vo, Wo,V, Q)ZVO* s a):V:)],

where w, = [w,,, w,] and v, = [v,, V)].

*+in this scenario,

o’

Remark 2.1. [15] One can assert that (w,,, )] <; [V,,, V] © W,, < V,,, W, <V
the relation < is called partial order.

Remark 2.2. [36] Let dy, represent the Hausdorff-Pompeiu distance between |w,,,w,] and [V,,,V;]

listed below.
£ *
Wy, — Vo, |5 |W, =V,

9

} . (2.2)

dy ([wo.. ). [V, V) = max |
The pair (K., dy,) obviously fulfills the criteria for complete metric space.

Definition 2.1. [37] Let K- be designated as the space of all fuzzy subsets of R. Then, the mapping
f: R > [0, 1] is termed as a fuzzy interval or number if it fulfills the subsequent features.

(i) i should be normal, which means that there must be the existence of some » € R such that
fe) = 1.
(ii) T should possess the upper semi-continuity on R, which means that for any given x € R and
€> 0,36 > 0such that f(x) — f(y) < € Yy € R, with |x —y| < 6.
(iii) 1_’ should possess fuzzy convexity such that f((l —A)xy + Apnr) = min(f(%l),f(%z)), Vi, %, € R,
and A, € [0, 1].
(iv) cl{x € R/f(x) > O} is compact which implies thatf is compactly supported.

Here, we introduce a notation F.(R), which is designated as the set of all fuzzy intervals of K.

peﬁnition 2.2. [37] For any given f € F.(R), the le\iel or cut sets are provided by | f P={xeR:
f(x) > B}, VB € [0, 1]. In case B =0, then we attain [ §1° = {x € R : (%) > 0}. These sets are termed
as B-cut or B-level for f.

Definition 2.3. [38] Let 7,3 € F.(R), and “ < is a relation on F.(R), then i <3 & [{]* <, [3]", VB €
[0,1].

Note that the relation “ < ” is partial ordering.
We will now talk about a few characteristics related to basic arithmetic operations of real fuzzy
intervals. For g,f € F.(R), p € R, and B € [0, 1], these operations are provided by

[5+71° = [s]" + [{]",
[5x7]° = [8]" x [{I",
[p-7° =p-[7"
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Theorem 2.1. [37] If the set F.(R) is associated to supremum metric, then, Vﬁ,f € F.(R),

d(3,7) = sup du([31% [f1) (2.3)

0<B<1
is a complete metric space. In the above expression dy represents the Hausdorff metric on F.(R).

Theorem 2.2. [37] Let us have an int_erval-valued function (I.V.F), i.e., ]z : [a,,b,] = K., which is
provided in the form of | = [§.,{"], then { is said to possess interval Aumann integrability on [a,,b,] &
f., and {* are both possessing Aumann integrability on [a,,b,], i.e.,

by b, b,
f fOo)dx = [f T*(%)d%,f f*(%)d%]. 2.4)

Definition 2.4. [39]Afuncti0n]z :Ic R = F.(R) is termed as F-1-V, ¥B € [0, 1], the B-levels or cuts
define the family of LV.Fs, Ty : 1 ¢ R — F.(R), which is provided by T3(x) = [.(¢, B), 7*(¢, B)], Vx € L
Here, Y8 € [0, 1], the functions §*(-, B),§.(-,B) : I — R are real functions of fB(%), and are known as
upper and lower functions of .

Definition 2.5. [39] Let the function f:1c R — F(R)be an FLV, then | is said to possess
continuity at x € L, if VB € [0, 1], fg(%) is continuous < upper and lower functions §*(x, B) and §.(x, B),
respectively, are both continuous at the same point.

Definition 2.6. [39] A function T : 1 c R — F.(R) is assumed to be the FLV. The fuzzy integral of {
on [a,,b,], designated by (FR) fa b f(0)dx, which is defined level wise as

bO - B bO bﬂ
|FR) f fGdx| = (R f fuGod = { f T4, B)d : 7%, 5) € Rio, .
VB € [0,1]. Here, Ry, 1, is considered as the set of the functions that lie at the end of the Fyp. T is
fuzzy Riemann (FR)-integrable on [a,,0,], if (FR) fa K fGOdx € i.(R).

Definition 2.7. [39] A function f : 1 ¢ R — F.(R) is assumed to be the F;yr as well as B-cuts or
levels define the family of L V.Fs, i : [a,,0,] C R — K, such that fz(x) = [f.(x, B), *(%, B)], VB € [0, 1]
and x € [a,,b,]. Then, | is (FR)-integrable on [a,,b,] &<, both §.(x, B) and §*(x,B) are integrable on

[a,,D,], then
b, B b, Do Do
[(FR) f T(%)d%] :[ f .G By, f f*(%,B)d%]:(IR) f F GO, 2.5)
VB € [0, 1].

It is to be noted that if both functions lying at the ends of the interval are Lebesgue-integrable, then
f is stated as a fuzzy Annum integrable function.

In the subsequent, we mention fuzzy Riemann-Liouville fractional integral operators which were
established by Allahviranloo et al. [40].
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Definition 2.8. Let A1, > 0 and L([a,,b,], F.(R)) be the space of all Lebesgu_e measurable Fjy g, on
[a,,D,], then the fuzzy right and left Riemann-Liouville fractional integral of T € L([a,,0,], F.(R)) of
order A, > 0 are given by

Sﬁff(%)‘r( 0 f (y =2y "i(y)dy, x <D, (2.6)
and
I5) = L f G =y i (y)dy, x> a,, 2.7)

respectively, where I'(1,) = fow yY~le™Vdy is termed as the gamma function.
While the fuzzy right and left Riemann-Liouville fractional integrals for the upper and lower
functions of the interval can be stated as follows:

do—1 _ do—1
[3; f(%)] L f (y — )" fa(y)dy = T f (y =) [1.(y, B), " (y, B)|dy, % <D,, (2.8)
where
~Ao Qo1
\sb;f*(%,/lo) F(/l)f (y —2)" f(y,B)dy, x<b,, (2.9)
and
ngf*(%,/lo) I“(/l)f (y — 2 '§*(y,B)dy, % <D, (2.10)

in a similar fashion we can state left Riemann-Liouville fractional integral for the upper and lower end
point functions of the interval.

The structure of the paper is organized as follows: After reviewing the essential background
information and pertinent details regarding fuzzy theory, fractional theory, superquadraticity and its
associated inequalities in Section 1, we briefly discuss the ideas of F;yr, and I.V.F's, as well as fuzzy
interval Riemann-Liouville fractional integral operators, in Section 2. We come up with the concept
of superquadratic F,y s in Section 3 and more significantly, we develop new inequalities of H.H’s
and Jensen’s types for superquadratic F;y g in the same section. Then, using fuzzy interval Riemann-
Liouville fractional integral operators, the fractional form of inequalities of H.H’s type are obtained for
superquadratic F; v in Section 4. Graphical behavior, numerical estimates and examples of the results
are also taken into consideration in order to assess if the results are beneficial. Section 5, the last part,
looks at a brief conclusion and potential directions for future study based on the work’s findings.

3. Superquadratic F;yr and its integral inequalities

This section develops the definition of superquadratic F,yr and discusses its features as well as
establishes novel inequalities of H.H’s and Jensen’s types for such a sort of function.
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Definition 3.1. A function i : 1 ¢ R — F.(R) is called superquadratic F;vyr on 1 if the subsequent
inequality

f (Ao, + (1 = 2,)b5) < A,(7(a,)=F((1 = A)la, — b)) F(I = A,)(7(D,)=T(Aola, — Bol)) (3.1)
holds Va,,b, € 1, A, € [0, 1], and f(a,) > 0.
Remark 3.1. If the inequality in (3.1) reverses, then f is called subquadratic Fjyr on L
Remark 3.2. If the inequality in (3.1) turns to equality, then f is called affine F;yr on L

Remark 3.3. If{ is superquadratic F;yr on |, then for p > 0, pf is superquadratic F;yr on L.

Remark 3.4. If §(x) and §(») are superquadratic F;yr on 1, then max(f(x), 3(x)) is superquadratic
Fiyronl VYx €L

Theorem 3.1. Let§ : I — F.(R) be a F;yr on I with f(x) = 0, whose B-cuts or B-levels define the
family of LV.Fs, such that T : 1 ¢ R — K! c K, which are provided by

fs () = [7.(%, B), (%, B)], (3.2)

then § is superquadratic on 1 if and only if the functions f.(x, B) and §*(x, B) both are superquadratic,
Ve el and 3 € [0, 1].

Proof. Let { is a superquadratic F;yr on I, then VA4, € [0, 1] and %,y € I, and we attain

f (Ao + (1 = A,)y) = A,(FG)=T((1 = )l — yD)F(1 — ) ([F(Y)=T(Aolx — 1)) (3.3)

Therefore, according to (3.2), the left term and right term of (3.3) can be expressed in the following
fashion:

TB (/lo% + (1 - /lO)Y) = [f* (/10% + (1 - /lo)y’ B) ’ f* (/10% + (1 - /lo)ya B) ]9 (34)

and

Ao(F3C)=Ta((1 = )l — yD)+(1 = 2,)(Fa(y)—Ta(Aol — yI))
=[/lo(f*(%, B)=F.((1 = A,)le = yI,B)), Ao (F" (%, B)=F((1 = A,)l = yl, B))]

+ [(1 - /lo)(f*(Ya B)_f*(/lol}f - Y|9 B))’ (1 - ﬂo)(f*(y’ B)_T*(/lolx - Y|, B))]’ (35)
respectively. So it implies that

[f* (/10% + (1 - /lo)y’ B) s f* (/10% + (1 - /10)Y9 B)]
SI[/L,(T*(%, B)=F.((1 = 2)lx = yI, B)), (7" (¢, B)—F"((1 — A,)lx — yl, B))]

+ [(1 - Ao)(f*(y’ B)—T*(/l(,l% - Y|» B))’ (1 - /lo)(f*(y’ B)—T*(/L)W - Y|a B))]9 (36)
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and it follows from (3.6) that

fi (o2 + (1 = 2,)y, B) < Ao(F. 06, B)=1.((1 = )% = yI, B)) + (1 = )(F(y, B)—T. (Aol — yI, B)),  (3.7)
and

" (o2 + (1 = A,)y, B) < Ao(F (¢, B)=F"((1 = o)l — yI, B)) + (1 = ,)(*(y, B)—T" (Aol — yI, B)), (3.8)

VB €0, 1].

Inequalities (3.7) and (3.8) obviously illustrate that f.(x, B) and {*(x, ) are superquadratic functions.
Conversely: Assume that f.(x, 8) and {*(x, 8) are superquadratic functions, therefore, they have to
satisfy the inequality given by the Definition 1.1. So, we attain

T* (/10% + (1 - /l())y’ B) < AO(T*(%, B)_T*((l - /lo)l% - Y|, B)) + (1 - ﬂo)(f*(y’ B)_T*(/lolx - Y|5 B))’ (39)
and
" (Ao + (1 = 25)y, B) < A,(F (¢, B)=F"((1 = )l = yI, B)) + (1 = 2,)(F"(y, B)=T" (ol — yI. B)), (3.10)

VB e [0,1] and %,y € .
From (3.9) and (3.10), we attain

[f, (ot + (1= 2,)y.B) . F* (Ao + (1 = 2,)y,8) ]
<1 A0l B0 = Al = 31, B, Aol G BT (1 = A, )t = 31, B)|

+ [(1 - /lo)(f*(}h B)_f*(/l()l}f - Y|, B))’ (1 - /l())(f*(y’ B)_f*(/l()l% - Y|’ B))] (31 1)

From (3.2) as well as using the basic fuzzy arithmetical properties, we attain that

fo (Ao + (1 = A,)y) < A,(Fs(0)=Ta((1 = )¢ — yD)+(1 = 2,)(Fa(y)=Ts(ol% — yI)), (3.12)
thus,
(Ao + (1 = 2,)y) < A,(FC)=T((1 = )l — yD)F(1 = ,)(F(y)=T( Al — yD), (3.13)
YA, €[0,1],and »,y € 1.
Hence, f is superquadratic Fy.r on L. O

Example 3.1. Consider the Iy, f : [0, 1] — F.(R), defined as follows:

2 5 € [0,2x%],

2%3°
fs) =450 5 € (24, 4%),
0, otherwise.
Then, VB € [0, 1], and we have
fa(x) = [2B%°, (4 — 2B)x°]. (3.14)
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Since each function in (3.14), which are designated by f.(x, 8) = 2Bx> and *(x,B) = (4 — 2B)»> are
superquadratic functions by utilizing Lemma 1.2. From Theorem 3.1, f(x) is then superquadratic F; yf.

Beside this, the subsequent graphs which are based on the values of L, R, L,, and R, also confirm
that f(x) is superquadratic F;yr. As we mentioned earlier, f(x) is superquadratic F;y or f(x) satisfies
the condition given by Definition 3.1, from Theorem 3.1, the condition of Definition 3.1 holds if the
functions f.(x, 8) and (%, 8) are superquadratic and we know that a function is superquadratic if it
satisfies the condition or inequality (3.1) given by Definition 1.1. Therefore, the notations L; and R, are
supposed to be the representations for left and right terms of f.(x, 3) via Definition 1.1, respectively.
Similarly, L, and R, are the representations for left and right terms of {*(», 8) via Definition 1.1, so
their values are given as follows:

Ly = 2B(4,(a,) + (1 = 2,)b,)’,

Ry = 2,(2Ba,” = 2B((1 = 2,)(b, — 0,))*) + (1 — 2,)(2Bb,” — 2B(4,(b, — a,))’),

Ly = (4= 2B)(A,(a,) + (1 = 2,)b,)’,

Ry = 2,((4 = 2B)a,” — (4 = 2B)((1 = 2,)(b, — 0,))°) + (1 = 2,)((4 = 2B)b,” — (4 = 2B)(A,(D, — a,))*).

Figures (1a) and (1c¢) show that f,.(x, B) is superquadratic while the Figures 2 and (1d) show that
*(#, B) 1s superquadratic. So according to Theorem 3.1, the function f(x) satisfies inequality (3.1) of
the Definition 1.1. Hence, f(x) is superquadratic F;yr.

o 0302 R S 0322
K ..r__'____..,--w" HL ; ___rf_-'_r__.f--"" HR.
0.0 00_ HL
I I
L !
0.6 |[ 10!
04 ] :
fag.bo) | flas.bo)0.5 |
R ¥-1 t
]
0.0% 0.0,
iy ---""---1_,___
b, 06 b 06 =l

@B=07,1,=05,q,€[0,04]and b, € [0.5,1] for (b)B=0.7, 2, =0.5, a, € [0,0.4] and b, € [0.5, 1] for
f.(%, B) = 2853, (2, B) = (4 - 28)x°.

T T T T T T
— R | | I I L
0.12 Lo : : : 0.28
— L

0.10

0.08
f(Bo) .06 f(Bo)

0.04

0.0 0.2 0.4 0.6 0.8 10
Bo

()1, =05 a, =02,b, =05and B € [0,1] for (d) 2, = 0.5, a, = 0.2, b, = 0.5 and B € [0, 1] for

fo(e, B) = 2823, (%, B) = (4 — 2B)x3.

Figure 1. Graphical illustration of Example 3.1.
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Similarly consider the following example.

Example 3.2. Consider the Iy, f : [1,4] — F.(R), defined as follows:

5—e 2 2
> 0 €[e™,2e™],

fs(0) = {258 5 € (2%, 46,

2%3 )
0, otherwise.
Then, VB € [0, 1], and we have
fa() = [(B + De™, (4 — 2B)e™]. (3.15)

Since each function in (3.15) is represented by f,(»,8) = (B + 1)e* and *(%,B) = (4 — 2B)e*, to
show that f is superquadratic F;yr, it is mandatory that f.(x, 8) and §*(x, B) should be superquadratic.

So moving in the same fashion as in Example 3.1, we obtain the 2D Graphs (Figure (2¢,d)) and 3D
Graphs (Figure (2a,b)).

R

@ 20 HR
L

L

I
ZDUDE
[

f(ap,b,)1000 Ii:

(@B =071, =05 a, €[1,2]and b, € [3,4] for (b)B = 0.7, 1, = 0.5, a, € [1,2] and b, € [3,4] for
£.06,8) = (B + 1)e*. (¢, B) = (4 — 2B)e™.

450
400
350
f(Bo) 300 f(Bo) 600
250 500

200 400

1501 i i ;
0.0 0.2 0.4 0.6 0.8 1.0

fo
(© A =050, =2b,=3andBe[0,1]forf.(¢,B) = (d) A, = 0.5, a, =2, b, = 3 and B € [0, 1] for {*(x, B) =
B+ 1)e?. (4 — 2B)e?.

Figure 2. Graphical illustration of Example 3.2.

L; and R, are supposed to be the representations for left and right terms of f.(x, 8) via Definition 1.1,
respectively. Similarly, L, and R, are the representations for left and right terms of {*(x, ) via
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Definition 1.1, so their values are given as follows:

LI — (1 + B)ez(/lo(au)+(l_/lu)bo)’

Ry = (1 +B)(™ — 70 4 (1= 2,)(1 + B)(€™ — &)y,

Lu — (4 _ 26)82(/10((10)"'(1_/10)130),

Ry = 2,(4 = 2B)(e* — 2174070y 4 (1 = 2,)(4 = 2B)((e™ — >~ )).
Hence, f(x) is superquadratic F; yf.

Remark 3.5. If §*(x, ) = §.(%,B) with B = 1, then we attain the classical superquadratic function.

Now we provide the proof of the inequality of Jensen’s type for superquadratic F;yr, which is more
refined than the Jensen’s inequality for convex F;y .

Theorem 3.2. Let w; € R, %; € [a,,b,],i = 1,2,3,....k, kK > 2, and let T: [a,,b,] — §.(R) be a
superquadratic Fyyp, whose B-levels or cuts define the family of I.V.Fs such that, g : [a,,b,] = K' C
K., which are provided by

fa() = [T, B), 7" (%, B)], (3.16)
Vx € [a,,b,] and B € [0, 1], then

1 < 1 < 1 1
T(Wk ; witi) < W ; W)= Z (i - szizlw,-(%,-ﬂ), (3.17)

=
where Wy = X | w;.

Proof. According to (3.16), the inequality (3.17) can be stated as

k k
[f*(\%k Z WX, B), f*(ik ; WX, B)]
s[wik Zkl: Wit (i, B) — wik Zk; w,-f*( s — Wikzg;lw,-(%,.) ,B),
W Zk: (i, B) — — Zk: wlf*( i — Wikz;.; i) B)] (3.18)

Thus, it may be shown that

1 < 1 < 1 < 1
HETTE Vi B) < = il iaB - r i *( i _zn_ i\ ,B), 3.19
f(wk;w% wk;wf(% ) Wk;wf P W i) ( )
and
1 < -~ 1 < 1
f*(— WiX;, B) < — (,()l'f* Ai, B)— — w,f*( ;i — —ZII: wiXil, B) (320)
Wi ; k3 ( ) Wi ; Wi
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We derive this theorem by employing the mathematical induction principle; therefore, by taking k = 2
in (3.19), we obtain

f*(w’ﬁ)
W,

! w3 Wi w2 Wy . (W]
SWZT*(%, B) + WZT*(%LB) - WZT*(WJ%I - %2|,B) - sz*(WJ%l - %2|,B)
w w w w
:\712(&(%1,6) - f*(WZJ%l -0, B)) + W"’z(f*mz,ﬁ) - f*(ijl -], 8)). (321)
Similarly, by putting k = 2 in (3.20), we get
T*(C‘)l%l + wz%z’B)
W,
w [ W w * «f W
SWL(T*(M,B) - T*(sz% - 0], B)) + W22(f (2, B) — 1 (v712|’“ .8)) (3.22)

According to (3.16), the results (3.21) and (3.22) can be expressed as follows:

WX + WrXy WX + WrXy
[f ( W, T W,

sl[v“;—Z(f*(m,m - f*(%zl -], B))+ ﬂ(f*(xz,m - f*(ﬂpm -], B)).

V“;—‘Q(f*(xl,m—f*(v‘;—jm—le,fs)) VTZ(f (2, B) - f(—|%1 )8))|

It implies that

f(%f”%—(f( %)= f(—I%l—%z|))+W(f( )= f(—|%1 %)) (3.23)

Thus, the inequality (3.23) reflects the Definition 3.1. Hence, the result (3.17) is true for k = 2.
Next, we assume that (3.17) is valid for k — 1; therefore, we have

1 k-1 1 k-1

Let us now demonstrate the validity of (3.17) for k. Thus, we look at the left hand side (L.H.S.)
of (3.17), which is alternatively expressed as [f*(wik Zi‘:l wi%i,B), f*(wik Zi‘:l wi%,-,B)]. Here, first we

take T*(WLk > win, B) into account, i.e.,
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Wi
Wi

< V“;—i[f*(xk,s) -1

1 k-1
Hyx — wiXil, B)]

Wk—l[ (OF Wy 1 —
T*( %i, B) - f*(_ Hx — wiXil, B)]
Wi — Wi Wl Wi ;
k-1 k-1
Wi Wi w; Wi, [ wg 1
= — T, B) + T*( %i’B) - —f*(— A — Wik
w, e B LW Wi Wil Wi Zl
k-1
Wy Wi 1 )
- T« - il B).
ka'( Wi %k Wi ;w%
Using (3.24) in (3.25), we get
| & o = k-1 =
| = ii,B)S—k* B)+ — (1, B) — — i*( i iiaB)
T(Wk;w% w, 0 B+ i:lwf(% )~ ;w‘f # Wk_ll;:w%
k-1 k-1
Wi (CL)k 1 ) Wi (Wk_] 1
- A% — il B — T« - i
wo e WH;M i Wk_};w%
| & | =
SWk Z wif. (e, B) — W. Z wzf*( A Wo Wi, B)

k
1
n; — E WiX;
Wi

i=1

1 < 1 <
== wif (2, B) — — a)if*(
W Wi 2

Similarly, by taking f*(v%k > wi, B) into account, we have
1

| & k | &
f*(wk ; wiki, B) < IZZI wif* (¢, B) — V\_]k ; wif*(

T Wy 4
Inequalities (3.25) and (3.27) imply that

,B).

1 k
H; — m IZZI (,t),'%i|, B)

| & ) k
g S Sres)
| & | & | &
Sl[Wk ; w;f. (¢, B) — W, ; wif*( Xi— W, ; wixi|, B),
k k k
Wik Z wif (i, B) — Wik Z (Uif*( ni— Wi—l Z wi%i|, B)]

i=1 i=1 i=1

By Theorem 3.1, the inequality (3.28) is equivalent to the following:

I~ 1 < o1
f(“_,k;wi%i) \Vk;wif(%i)_“_,k

1 n
=< WkZiZIwi(%i)D.

(-

i=

k
1
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Thus, (3.17) is true for k. Hence, this concludes the proof. O

Remark 3.6. If §.(x,B) = (%, B), with B = 1, then the result of Theorem 3.2 shrinks to the classical
Jensen inequality for the superquadratic function.

If w; = w; = ... = w = 1, then the Theorem 3.2 will reduce to the subsequent result.

Corollary 3.1. Let %; € [a,,b,], i = 1,2,3,...,k, k > 2, and let{: [a,,b,] — §.(R) be a superquadratic
Fvr, whose B-levels or cuts define the family of I.V.Fs such that f; : [a,,b,] — KI c K., which are
provided by

TB(%) = [T*(%ﬂ B)’ f*(%’ B)]’ (330)

VB3 € [0, 1], then

1 1 < 1 1,
T(E >, %i) <L 2= f(|%,~ - E21.:1(%,-)|). 3.31)

Remark 3.7. In the case of subquadratic F;yr, we have

f(wik Zk: wiki ) Z (i) Z (i - V:,kz;;lwi(x,-ﬂ). (3.32)
i=1

Next we propose inequalities of H.H’s type for superquadratic F,yr, which is more sharp than
inequalities of H.H’s type for convex F;yr. Additionally, a number of instances are offered to show
how the theory developed in this study is applicable.

Theorem 3.3. Let §: [a,,0,] — F.(R) be a superquadratic F;yr, whose B-levels or cuts define a
family of I.V.Fs such that {3 : [a,,b,] = K! c K., which are provided by

TB(%) = [f*(%’ﬁ), f*(%’B)], (333)

Vx € [a,,b,] and B € [0, 1]. Iff S FR([QU’[,O]’B), then

a, + bo o1 G, +D,
f( 2 + () —Q (FR) f )d%
—(FR) f fe)dx
~ ’ Do
L M) Fi,) . 1 (FR) f [(b, — %)F(¢ — a,)F(¢ — a,)i(b, — %)]dx. (3.34)
2 (bo - a0)2 [

Proof. Letf: [a,,b,] — F.(R) be a superquadratic F;yr, then from Definition 3.1, we have

F(dox1 + (1 = Ap)22) < A (f(e1)=F((1 = o)1 = #2)F(1 = 2,)(F0e2)=T(Aole1 — 22])). (3.35)

Inequality (3.35), according to Theorem 3.1, can be written as
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[f*((l - /10)%2 + /10%] , B), f*((l - /10)%2 + /10%] , B)]
/10)|%2 - %1|»B) - (1 - /l())f*(/lolxl - %ll’ B)’

SI[(1 - /lo)f*(%Z’ B) + /lof*(%l’ B) - /107*((1 -
(1 = )T (2, B) + A, 7 (1, B) — A5 ((1 = A2 — 11, B) = (1 = A)F" (Aolea — 211, B)]. (3.36)
It implies that
T*((l - /10)7'52 + /10%1, B)
<(1 = )T (2, B) + AT (1, B) = AT.((1 = A2 — 211, B) — (1 = 2)Tu(Aol%2 — 51, B), (3.37)
and
f*((l - /lo)%Z + /10%1, B)
<S(1 = )T (2, B) + .8 (1, B) — AT ((1 = o)ty = 24, B) = (1 = A)f"(Aole2 — 21, B). (3.38)
First taking (3.37) into account and setting 4, = % in (3.37), we get
H1+ o2, B)  §.0¢1,B) 2o — 2]
Choosing %, = a,4, + (1 — 4,)b, and %, = b,4, + (1 — 4,)a,, in (3.39), we obtain
a,+b
. (4 O’B
H(5)
*\Hoto 1_ooa *\Molo 1_00’ o~ Yo
Sf (a,4, +(2 A,)b,, ) N f.(bA, + (2 A,)a,, B) —f*(bTall —Z/IOI,B). (3.40)

Integrating (3.40) w.r.t 4, on [0, 1], we attain

T*(ao + b”,B)

2

* 1)/1 1 /10 b(),B * bo/lo 1 /10 I)’B : bo_ 0

f‘f(a + ( ) ) i +(2 )Q, )d/lo—ff*( 2a|1—2/lo|,8)d/1
0

b,
B)dx — f il = 2 ,B)d%.
(b - 0)
It implies that
a, + b, 1 B a, +b,
* s * - D ’ . '41
f( - B)+bo_aof%f(% - B)d (3.41)
Likewise, if we take inequality (3.38) into account, we obtain
0 + bl) 1 bl) 9 b() 1 b()
T*(a ,B) + f f*( % — ,B)d% < FouB)de.  (3.42)
2 (bo - ao) 5 o~ Yo Jq,
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According to (3.33), the inequalities (3.41) and (3.42) can be viewed as follows:
a, + b, a, + b, 1 o o
* —,B 5 * s B + * ,B B *
R A e L A Jo |

1 b, b, o
<i—| f f,(¢, B)d, f P B

It implies that

T(ao er bo);(bo 1 ao)(FR) f: T(

Next, we prove the other half of the inequality. Since f is a superquadratic F;yr on [a,,D,], we have
from Definition 3.1 that

a, +b,
2

a, +b,
2

%_

, B)d%

1

o — Uy

a, +b,
%_

Dy
)d% < ——(FR) f fo)doe. (3.43)

f(ao/l() + (1 - /lo)bo)
<A,T(a,)F(1 = 2,)F(0,)=2,T((1 = 2p)Iby — a)=(1 = 2,)7(A,]0s — ). (3.44)

The inequality (3.44), according to (3.33), can be written as
@0 + (1= 2000, B @0y + (1= 2,000, )
Sz[/lof*(ao, B) + (1 = A)Fu(by, B) = AT((1 = A0y — a,l, B) — (1 = 26)F.(Ao0 — ], B),
AT (0, B) + (1 = 2,)F (0o, B) = A,§((1 = Ao)Iby = a,], B) = (1 = 2,)T"(Ao[by — 0], B) |-

It implies that

fo(a,d, + (1 = 4,)b,, B)
S/lof*(ao’ B) + (1 - /lo)f*(bo’ B) - /107*((1 - /10)|b0 - aol’ B) - (1 - /lo)f*(/lolbo - aola B)v (345)

and

T*(ao/lo + (1 - /lo)boa B)
<A (5, B) + (1 = 2,)F"(0,, B) = 4,7 ((1 = A0y — a,l, B) — (1 = 2,)T" (4,0, — @], B). (3.46)

Replacing a,4,+(1—-4,)b, by b,4,+(1—1,)a, in inequalities (3.45) and (3.46), we obtain the following
inequalities:

f*(bo/lo + (1 - /10)(10, B)
S/lof*(boa B) + (1 - /lo)f*(am B) - AOT*((I - /10)|b0 - aola B) - (1 - AO)T*(/lolbo - aola B)’ (347)

and

T*(bo/lo + (1 - /10)(10)
<A (0o, B) + (1 = A,)F" (05, B) = 4,7 ((1 = A,)[by — a,l, B) — (1 = 2,)F" (A0, — ], B). (3.48)
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By the addition of inequalities (3.45), and (3.47), we attain

T*(ao/lo + (1 - /lo)boa B) + f*(bo/lo + (1 - /10)(10, B)
Sf*(bo’ B) + f*(ao’ B) - 2/10f*((1 - ﬂo)lbo - aola B) - 2(1 - ﬁo)f*(/lolbo - aol’ B) (349)

After integrating (3.49) via A, on [0, 1], and then changing the variables x = (a,4, + (1 — 1,)b,), b, +
a, — % = (0,4, + (1 = ))a,), 1 = A, = 2% and 4, = 2=, we obtain

b,— b,—a
1 B
f i, Byt
bo — 0 a,

(0, )+ 10, B) 1 f’o
B 2 (bo_ao)2 a,

[(B, —2)f.(3¢ — a,,B) + (3 — a,)f.(b, — 2, B)]dx. (3.50)

Similarly, adding (3.46) and (3.48) and continuing in the same manner, we arrive at

1 Po
f T (¢, B)dn
bo —Q a,

@ B+, B) f’“
B 2 (bo_ao)2 a,

[(b, — 2)i" (% — a,, B) + (¢ — a,)F (b, — %, B)]dx. (3.51)

According to Theorem 3.1, the inequalities (3.50) and (3.51) can be viewed as follows:

1 b, b,
—| f 7.t By, f 7, B)d |

S [ RORUR O 2 [NOMOR OO

o
(bo - a())2 a,

\ \

(b, — )T (% — 0y, Bd, f (6, — %) (% — 0y, B)dx

1 bo Do
1—[f (2 = ap)fu(by — %, B)d%,f (¢ — a,)f"(by — 2, B)dx|. (3.52)
(bo - (10)2 a, Ao
It implies that
1 o
(FR) f f(x)dx
bo — 0 a,
o) Fi (b, 1 K i
(@) (FR) [ 10, =00 - 03 i, -l (35)
2 (bo - a0)2 a
The combination of (3.43) and (3.53) yields the desired outcome. This ends the proof. O

Remark 3.8. If.(x,B) = {*(%,B), with 3 = 1, then the result of Theorem 3.3 shrinks to the classical
H.H inequality for the superquadratic function proved by [22].

Remark 3.9. For subquadratic F;y, we attain the subsequent result

a,+b,\. 1 B a, + b,
FR -
L e A CEE | 2
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D,
-1 (R f G0
b, — q, o
~ b,
2f(ao)'|‘f(bo): 1 (FR)f [(b, — %)f( — ao)_T_(% — a,)j(b, — x)]dx. (3.54)
2 (bO - a0)2 [}

In the subsequent example, we show how Theorem 3.3 holds graphically and numerically.

Example 3.3. Consider the F;yr f : [0,2] — F.(R), defined by

52 5 € [0,2%°],

2%3 ’
foe) = 4450 5 € (2, 4%,
0, otherwise.
Then, VB € [0, 1], and we have
fa(x) = [2Bs°, (4 — 2B)%°]. (3.55)

Since the functions of (3.55), which are represented by f,(x, B) = 2Bx> and *(%, 8) = (4 — 2B)»> and
are superquadratic functions by utilizing Lemma 1.2, then V8 € [0, 1].

Thus, f(x) is superquadratic F;yr. So in the subsequent we calculate the values for the right, middle
and left terms of H.H’s type inequality over [a,, b,] = [0, 2] for the functions f.(x, ) and *(x, B).

a,+Db 1 Do 58
Left Term = ( 2 ",B)+ f (
eft Term = f 5 b, —a ), f

2 b

a, +b,
2

V4

, B)dx

1 o
Middle Term = — f F.0¢, B)dr = 48,
(05, B) + F.(b,, B 1 K
nght Term = f (a ) * f ( ) - f [(bo - %)f*(% — 0y, B) + (% - a())f*(bo - %’B)]d%
2 (bo - ao)2 a,
= 6.48.

Figure 3 provided below assures the authenticity of H.H’s inequality for the function f.(x, B).

m

O AR OO O B
[ Middle Term : :

———————————————————————————————————————————————————

Left Term'

________________________________________________

Bo
Figure 3. Graphical illustration of H.H’s inequality for f.(x, ), VB € [0, 1].
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Similarly, we have

a, +b 1 B
Lesi Term = (2222, 0) |
eft Term f( > +b()_aofa;f X

a, +b,
2

10— 5B

,B)d ,
% 2

1 Bo
Middle Term = - f (¢, B)dr = 8 — 4B,
(0,5, B) +7.(0,, B 1 b
Right Term = 10, B) +7.( ) — f [(b, — %) (> — a,,B) + (% — a,)f (b, — 2, B)]dx»
2 (bo - a0)2 a,
=19.2 — 9.68.

Figure 4 provided below assures the authenticity of H.H’s inequality for the function f.(x, B).

20F T T — T — -
| | — Right Term

— Middle Term

5L Locecoooos - demmmm T Left Term____

f(Bo)

0:0 0.I2 0.I4 0.I6 O.IB 1.I0
Bo
Figure 4. Graphical illustration of H.H’s inequality for {*(x, ), V8 € [0, 1].

Next, we consider the Table 1, which displays the values of right, middle and left terms of H.H’s
type for both §.(x, B) and (%, 8). Right, middle, and left terms of H.H’s type for f.(x, B) are designated
by %4, (%, B), M1.(x, B), and Lf,(x, B), respectively, while right, middle, and left terms of H.H’s type for
f*(x, B) are designated by ** (5, B), M§*(x, B), and Lf*(x, B), respectively.

Table 1. Numerical authenticity of Theorem 3.3.

B H.(, B) M2, B) M1, (¢, B) M (3, B) R0, B) (e, B)
0.0 0 5.0 0 8 0 19.02
0.1 0.25 4.75 0.4 7.6 0.64 18.24
0.2 0.5 4.5 0.8 7.2 1.28 17.28
0.3 0.75 4.25 1.2 6.8 1.92 16.32
0.4 1 4.0 1.6 6.4 2.56 15.36
0.5 1.25 3.75 2.0 6.0 3.2 14.40
0.6 1.5 3.5 24 5.6 3.84 13.44
0.7 1.75 3.25 2.8 5.2 4.48 12.48
0.8 2 3.0 32 4.8 5.12 11.52
0.9 2.25 2.75 3.6 4.4 5.76 10.56
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From the aforementioned figures and table, it is obvious that

10 - 58

[2.58, ] <, [4B,8 — 48] <, [6.48,19.2 — 9.68] . (3.56)

Hence, we have

a+b0~1 a, +b,
T(2 £ (FR)f‘

<5 (FR) f i)

Do
Sf(ao)+f(b0): 1 (FR)f [(b, — %)f( — ao)_]'_(% —a,)j(b, — x)]dx. (3.57)
2 (bo - (10)2 a

)d%

4. Fuzzy interval fractional H.H type inequalities for fuzzy interval valued superquadratic
functions

In this section, the proof of the fractional version of the inequalities of H.H’s type for superquadratic

F;yr via fuzzy interval Riemann-Liouville fractional integral operators along with graphical and
numerical illustration is provided.

Theorem 4.1. Let {: [a,,b,] — F.(R) be a superquadratic F;vy whose B-levels, or cuts define a
family of I.V.Fs such that, i : [a,,b,] = K c K., which are provided by

JTB(%) = [f*(%’B)a f*(%’ B)], (41)

Y € [a,,b,], B € [0,1] and y, > 0. If T € (FR)((q, 5,18 then

3 a()+b0 ~ Yo b _ o—1~ _ o—1 _ a0+b0

nf( 2 )+2(b0—af,)% (FR) f (B =)+ — )" )T(‘” 2 )d”

Iy, + 1D [, e
5W[IZ;f(bo)+Iy—f(a0)]
Q(b")j(“"”z(bo T FR) f (0 — 27" o — 0,7 )b, — 2)i(x — a,)

(¢ - a,)i(b, — 2)dx. (4.2)

Proof. Letf{: [a,,b,] — F.(R) be a superquadratic F;yr, then from Definition 3.1, we attain

f (o1 + (1 = Ao)22) < A,(FCe)=T((1 = o)1 = 22D)F(1 = A,)((e2)=T(Aole1 — 22])). (4.3)

Inequality (4.3), according to Theorem 3.1, can be written as

[F.((1 = )2 + Ao, B), (1 = Ap)2 + A1, B)]
SI[(1 - /lo)f*(%b B) + /lof*(%bﬁ) - /lof*((l - /lo)|%2 — X |7 B) - (1 - /lo)f*(/lo|%2 — X |7 B)’
(1 = )T (2, B) + A1 (o1, B) = A, ((1 = Ao)la — 211, B) = (1 = A,)F* (Aolea — 211, B)]. (4.4)
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It implies that

F.((1 = A%y + A1, B)
S(l - /lo)f*(%%ﬁ) + ﬁof*(%bﬁ) - ﬂof*((l - /10)|%2 - %ll’ B) - (1 - /lo)f*(/lol%Z - %ll’ B)’

and

(1 = )2 + A1, B)
(1= )T (2, B) + .17 (1, B) — AT (1 = Ap)loea = 211, B) = (1 = )T (Aole2 — 21, B).

First, taking (4.5) into account and setting 4, = % in (4.5), we get

T*(%l ;%2’3) < T*(%zz,ﬁ) N f*(%zl,ﬁ) B f*(l%z ;%1|,B)'

Choosing %, = a,4, + (1 — 4,)b, and %, = b,4, + (1 — A,)a, in (4.7), we obtain

0 bo * 0/10 1_/10 bo’B *bo/lo 1_ﬂo oaB bo_ 0
(ot ,B)Sf(a +(2 0,.B) . +<2 )a )_T*( )

Multiplying (4.8) on both sides by A,”~! and then taking integration w.r.t 1, on (0, 1), we attain

1
0 bo
f /loyo—lf*(a + ,B)d/lo
0 2

I 3 v-1 1 - I 3 v-1 1=
f /?'0 T*(ao/lo ; ( A’O)bO’ B) d/lo + f /10 f*(bo/lo ; ( /10)a07 B) d/lo
0 0

foa% 1f( |1—2/l|B)d/l

Next, setting % = a,4, + (1 — 4,)b, and y = b, 4, + (1 — 4,)a, in (4.9), we get

<

a, + b, . 3 -1 o+ D,
7f*( ,B)'l'mf ((b _%)y +(% a(,)y )f( 5 ,B)d%
—_— — o -1 —_— _— 0_1

<& _W f (b =106, By + (,—a(,)% f (y = ). (y, B)d
— (70) Yo Yo
iy LARORORY 7.0 )|

Similarly, by considering inequality (4.6), we get

2 (a,+D 1 b i
_§* o o - _ ),u_l ~ yo_l ) ) ) )
yof ( 2 4 B) + (b{) _ ao)yo . ((bo %) + (% (10) )f (% 5 , B)d%
T(¥o)  [ryoe e
_m[la;f (ba, B) + Ib;f (ao’ B)]

According to (4.1), the results (4.10) and (4.11) can be viewed as follows:

4.5)

(4.6)

4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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2 ()

+ (bo_;ao)yl: Lbo (0, — 27" + (2 — a(,)y"_l)f*(
b
ﬁ (b, — )" + (% — ao)yo_l)f*( ,B)dx]

—1%[(%&(% B) + 17 f.(, B)), (Izgf*(bg, B) + D" (a,, 13))].

a, +b,
2

o —

, B)d%,

a, +b,

A

It implies that

2 (a,+D,). 1 B, L . o +5,
Zf( 2 )+ (b() - (10)70 fa; ((b” - %))’ +(% - a()))’ )f(‘% - > )d%
<G, o (LT (4.12)

Next, we provide the proof of the other half of the inequality. Since f is a superquadratic F;yz on
[a,, b,], we have from Definition 3.1, ¥4, € [0, 1],

(0, + (1= A08,) < A,f(@) F(1ZA,)i(0,) A1 = )b, — D=1 (M0, = . (4.13)
The inequality (4.13), according to (4.1), can be written as
@ + (1= 20000, BT @0y + (1= 2,000, )
<[ Auf 0 B) (1= 20100, B) = A (C1 = A1, = 0o B) = (1 = F (A, = 0 B),
AT (00, B) + (1 = A, (8, B) = 4,7 (1 = 2)Ib, = ], B) = (1 = 1) (A,[b, = o, B)].
It implies that

f*(ao/lo + (1 - ﬂo)boa B)
S/lof*(aoa B) + (1 - /lo)f*(bm B) - AOT*((l - /10)|b0 - aola B) - (1 - /lo)f*(/lolbo - aola B)’ (414)

and

f*(ao/lo + (1 - /lo)bo’ B)
S/lof*(aw B) + (1 - 10)7*([)()’ B) - /lof*((l - /10)|b0 - aol’ B) - (1 - /lo)f*(/lolbo - Cl(,l, B) (415)

Replacing a,4, + (1 — 4,)b, by b,4, + (1 — 4,)q, in inequalities (4.14) and (4.15), we get the following
inequalities:

T*(bo/lo + (1 - /10)(10, B)
S/lof*(bm B) + (1 - /lo)f*(ao’ B) - /107*((1 - /10)|b0 - aol’ B) - (1 - ﬂ())f*(/l(,lb(, - aol’ B), (416)
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and

f*(bo/lo + (l - /10)(10)
S/lof*(bo’ B) + (1 - /lo)f*(aoa B) - /lof*((l - /lo)|bo - aol’ B) - (1 - ﬁo)f*(/lolbo - aola B) (417)

Adding the inequalities (4.14) and (4.16), we obtain

Jr*(ao/lo + (1 - /lo)bo’ B) + f*(bo/lo + (1 - /lo)aoa B)
Sf*(bo’ B) + f*(am B) - Z/lr)f*((l - Ao)lbo - Cl(,l, B) - 2(1 - ﬁo)f*(/lolbo - Cl()l, B) (418)

Multiplying (4.18) on both sides by A,7~! and then taking integration w.r.t 1, on [0, 1], we get
1 1
f /lo%_lf*(ao/l() + (1 - /la)bm B)d/lo + f /loya_lf*(ba/lo + (1 - /1(,)(1(,, B)d/l()
0 0
1
S_(f*(bm B) + f*(a()a B))
Yo
1 1
- zf /loyof*((l - Ao)lb() - a()l’B)d/lo - Zf (1 - /lo)/loyo_lf*(/lolbo - aol,B)d/lo- (419)
0 0

Setting # = a,4, + (1 — 4,)b, and y = b,4, + (1 — 4,)a, in (4.19), we get

1 b, - 1 b, -
o ), o s e [ -G
1 1 o - -
S)jo(f*(bo,ﬁ) +1.(0,, B)) - b, — oy fa ((bp = 20)77" + (2 — 0,)"7)[(by — ). (% — a,, B)
+ (% - az))f*(bn -, B)]d% (420)

It implies that

I'(y,)

N7 |7 Yo
= oy 00 B) + T )|

1 1 Do
S):(f*(bo,ﬁ) +f.(a,,B)) - b, .yt jc: (0, — )" + (2 — a,)° (b, — 2)f. (% — a,, B)
+ (¢ — a,)f. (b, — %, B)]dx. 4.21)
Similarly, adding (4.15) and (4.17) and continuing in the same manner, we arrive at

L'(y,)
(bo - a()))’a

1 * * 1 K o—1 o—1 *
Sz(f (0o, B) + T (a,, B)) — b, — oy j‘; (b —2)"7" + (2 — 0,)"° 7 )(b, — )T (% — a,, B)

+ (6 — a,)f" (b, — 2, B)]dx. (4.22)

T (0, B) + 12T (a0, )|

The findings (4.21) and (4.22) can be interpreted as follows in accordance with Theorem 3.1:
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I'(y,)
(b — ap)%

Sz%[f*(amﬁ),T*(amB)]jri[f*(bo,B)’T*(b(,,B)]

o

(147,00, B) + L2700, ). (2700 B) + T2 0, B))|

Do
‘W[ f (B =)™ + (¢ = @) )(By = 20T.0% = . B)el,

b,
f ((bo - %)%_1 + (% - ao)yo_l)(bo - %)T*(% — Qp, B)d%]

a,

1 b,
o, Z T [ (b, = 20" + (¢ = 0, ) (2 = 0o)f.(by = . B)dx,

b,
f (0, — %)™ + (% — a,) )% — a,)F* (b, — 2, B)d%]. (4.23)

It implies

I'(y,)

(b, — a,)7
Do
ﬁ%(f(b());f(a())):—(bo — a—o)yo+l (FR)L ((bo _ %)70—1_7_(% _ ao)yo—l)[(bo _ %)f(% _ ao)

F(% — a,)f(b, — 2)]dx. (4.24)

LCRESHEIEN]

When we combine (4.12) and (4.24), we obtain the desired outcome.
This brings the proof to its end. O

Remark 4.1. Ify, = 1, then the result of Theorem 4.1 reduces to the result of Theorem 3.3.

Remark 4.2. If §.(x,B) = §*(%,B), with B = 1, then the result of Theorem 4.1 reduces to the fractional
H.H inequality for the superquadratic function proved by [23].

Remark 4.3. If§.(x,B) = (%, B), with B = 1 and y, = 1, then the result of Theorem 4.1 shrinks to the
traditional H.H inequality for the superquadratic function proved by [22].

Remark 4.4. In the case of subquadratic FyF, then we attain the following result:

2 Cl + b ~ ’}/ ba _ a + b
— 0 o o bg _ Yo—1 —a, Yo—1 (‘ % 0
%f( 2 )+2(b0 —a,)% fa ((bp = 20)™7 F(x — a,)"7 )il |« 5

TO0+ D) [ e
S [Ia;f(bombof(ao)]

~ b,
Zf(b(]);f(al))lz(bo _7210)7<,+1 (FR) jﬂ: ((bo - %)%_1;(% - ao)yo_l)[(b() - %)T(% - Cl(,)

(¢ — a,)f(b, — %)]dx. (4.25)

)

In the subsequent example, we show how Theorem 4.1 holds graphically and numerically.
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Example 4.1. Consider the F;yr §: [0,2] — F.(R), defined as follows:

2, §e[0,2:4,
fs(0) = $ 450§ € (263, 41),

243

0, otherwise.

Then, VB € [0, 1], and we have

fa(x) = [2B2°, (4 — 28)%°].

(4.26)

Since each functions of (4.26), which are represented by f, (%, 8) = 28> and *(%, B) = (4 — 2B)»> and

are superquadratic functions, Y8 € [0, 1].

Thus, f(x) is superquadratic F;yr. So in the subsequent, we calculate the values for the right,

middle, and left terms of Theorem 4.1 over [a,,b,] = [0,2] and vy, = %, for the function f.(x, B3),

9(23) — 64),

352
Middle Term = 245‘—8,

4168
Right T =88 - ——.
ig erm 315

Figure 5 provided below assures the authenticity of H.H’s inequality for the function f.(x, B).

Left Term = 8(2 -

Tm ;
- [~ Right Term
 Middle Term
5L e P — = — = om ==
4 __________________________________________________
f(B) N S R R P

S A A R A
Bo
Figure 5. Graphical illustration of fractional H.H’s inequality for f.(x, B), VB € [0, 1], and
Yo = %
Similarly, for {*(x, B) and y, = %, we have

Left Term = (4 - 23)(1 _ (9(23) — 64))

358
12(4 -2
Middle Term = (TB),
. 4-2B)8 416(B-2)
R T = .
ight Term > + 315
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Figure 6 provided below assures the authenticity of H.H’s inequality for the function f.(x, B).

— Right Term’

P T I — Middle Term

Left Term

10

f(Bo) 8

6

4

0.0 CER— i 053 ' 1.0
Bo
Figure 6. Graphical illustration of fractional H.H’s inequality for {*(x, 8), VB € [0, 1].

Next, we consider the Table 2, which displays the values of right, middle, and left terms of H.H’s
type for both f.(x, B) and (%, B). Right, middle, and left terms of H.H’s type for f.(x, ) are designated
by %5, (%, B), M1.(x, B), and Lf,(x, B), respectively, while right, middle, and left terms of H.H’s type for
f*(x, B) are designated by **(x, B), ¥{*(x, B), and 5§*(x, B), respectively.

Table 2. Numerical authenticity of Theorem 4.1.

B H.(%, B) (%, B) M. (%, B) M (%, B) R5. (¢, B) R (2, B)
0.0 0 5.5 0 9.6 0.0 13.3
0.1 0.27 5.27 0.48 9.12 0.6 12.6
0.2 0.55 5 0.96 8.64 1.3 12.0
0.3 0.83 4.72 1.44 8.16 2.0 11.3
0.4 1.11 4.44 1.92 7.68 2.6 10.6
0.5 1.38 4.16 24 7.2 3.3 10.0
0.6 1.66 3.89 2.88 6.72 4.0 9.3
0.7 1.94 3.61 3.36 6.24 4.6 8.6
0.8 222 3.33 3.84 5.76 5.3 8.0
0.9 2.50 3.05 4.32 5.28 6.0 7.3

From the aforementioned graphs and table, it is obvious that

- 2222 a1~ (ML)
Sl[zm 12(4 — 28) 4168 (4 —2B)8 416(6—2)].

5° 7 5 35 2 315

] < [8[5 _ (4.27)

Hence, we have

2 [a,+Db,\. y bo 3 a, +b
= 0 19} il 1] bo_ y0—1+ —a, YVo—1 (‘ _ o 0
%f( - )z(bo_ao)% f (B = 7 F0e = 0,7 (e - 22

)d%
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g LN GO0

~ bo
57(’30);‘?(%);2@0 _7‘;0)%“ (FR) f (b, =20 F(x = 0, )b, = )i(x = a,)

(0t — a,)f(b, — %)]dx. (4.28)

5. Conclusions

We introduced the notion of superquadratic Fjyr,, significantly advancing the field of fuzzy
mathematics. We developed discrete type Jensen and H.H inequalities for superquadratic F;y r, using
fuzzy order relations, providing a refined framework beyond traditional convexity-based approaches.
The study extended these inequalities to their fractional versions using fuzzy interval Riemann-
Liouville fractional integral operators. The robustness and authenticity of our results were confirmed
through reduced results, numerical computations, and graphical illustrations. Our work enhances
the theoretical foundation of superquadraticity in fuzzy intervals and has practical applications in
optimization, decision-making, and control theory. It adds substantial scientific value by expanding
the mathematical toolkit for handling fuzzy data. The study primarily focused on a specific class
of superquadratic functions and their inequalities. Future research should explore other classes of
superquadraticity, as well as interval-valued and F;yr. We suggest to investigate further inequalities
for superquadratic F;yr, such as Jensen-Mercer, midpoint, trapezoidal and Fejér type as well as
their fractional perspective via different fractional calculus models, including conformable, Atangana-
Baleanu, k-Riemann-Liouville, Caputo-Hybrid and Prabhakar fractional operators suggesting a wide
range of practical applications. The concept presented in this study can be considered as a cornerstone
in developing the notions such that h-superquadratic F;yr, m-superquadratic F;yr, P-superquadratic
Fvr, and (P, m)-superquadratic F;yF.
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