In this paper, we investigate a coupled system of Hilfer-type nonlinear proportional fractional differential equations supplemented with mixed multi-point and integro-multi-point boundary conditions. We used standard methods from functional analysis and especially fixed point theory. Two existence results are established using the Leray-Schauder's alternative and the Krasnosel'skii's fixed point theorem, while the existence of a unique solution is achieved via the Banach's contraction mapping principle. Finally, numerical examples are constructed to illustrate the main theoretical results. Our results are novel, wider in scope, produce a variety of new results as special cases and contribute to the existing literature on nonlocal systems of nonlinear $ \psi $-Hilfer generalized fractional proportional differential equations.
Citation: Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon. Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems[J]. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
In this paper, we investigate a coupled system of Hilfer-type nonlinear proportional fractional differential equations supplemented with mixed multi-point and integro-multi-point boundary conditions. We used standard methods from functional analysis and especially fixed point theory. Two existence results are established using the Leray-Schauder's alternative and the Krasnosel'skii's fixed point theorem, while the existence of a unique solution is achieved via the Banach's contraction mapping principle. Finally, numerical examples are constructed to illustrate the main theoretical results. Our results are novel, wider in scope, produce a variety of new results as special cases and contribute to the existing literature on nonlocal systems of nonlinear $ \psi $-Hilfer generalized fractional proportional differential equations.
[1] | K. Diethelm, The analysis of fractional differential equations, Springer, 2010. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of the fractional differential equations, Elsevier, 2006. |
[3] | K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, John Wiley, 1993. |
[4] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[5] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Springer, 2017. |
[6] | Y. Zhou, L. Zhang, Basic theory of fractional differential equations, World Scientific, 2014. https://doi.org/10.1142/10238 |
[7] | B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, World Scientific, 2021. https://doi.org/10.1142/12102 |
[8] |
I. Petrás, R. L. Magin, Simulation of drug uptake in a two compartmental fractional model for a biological system, Commun. Nonlinear Sci. Number. Simul., 16 (2011), 4588–4595. https://doi.org/10.1016/j.cnsns.2011.02.012 doi: 10.1016/j.cnsns.2011.02.012
![]() |
[9] |
I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Phys. Today, 55 (2002), 48–54. https://doi.org/10.1063/1.1535007 doi: 10.1063/1.1535007
![]() |
[10] |
M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Modell., 318 (2015), 8–18. https://doi.org/10.1016/j.ecolmodel.2015.06.016 doi: 10.1016/j.ecolmodel.2015.06.016
![]() |
[11] |
F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
![]() |
[12] |
F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. https://doi.org/10.1515/math-2020-0014 doi: 10.1515/math-2020-0014
![]() |
[13] |
F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equations, 2020 (2020), 303. https://doi.org/10.1186/s13662-020-02767-x doi: 10.1186/s13662-020-02767-x
![]() |
[14] |
I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equations, 2020 (2020), 329. https://doi.org/10.1186/s13662-020-02792-w doi: 10.1186/s13662-020-02792-w
![]() |
[15] |
R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comput. Appl. Math., 307 (2016), 39–45. https://doi.org/10.1016/j.cam.2016.05.014 doi: 10.1016/j.cam.2016.05.014
![]() |
[16] |
H. Joshi, B. K. Jha, Chaos of calcium diffusion in Parkinson's infectious disease model and treatment mechanism via Hilfer fractional derivative, Math. Mod. Numer. Simul. Appl., 1 (2021), 84–94. https://doi.org/10.53391/mmnsa.2021.01.008 doi: 10.53391/mmnsa.2021.01.008
![]() |
[17] |
H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
![]() |
[18] |
J. Wang, Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859. https://doi.org/10.1016/j.amc.2015.05.144 doi: 10.1016/j.amc.2015.05.144
![]() |
[19] |
J. V. C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
![]() |
[20] |
S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
![]() |
[21] |
S. K. Ntouyas, A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions, Foundations, 1 (2021), 63–98. https://doi.org/10.3390/foundations1010007 doi: 10.3390/foundations1010007
![]() |
[22] |
I. Mallah, I. Ahmed, A. Akgul, F. Jarad, S. Alha, On $\psi$-Hilfer generalized proportional fractional operators, AIMS Math., 7 (2022), 82–103. https://doi.org/10.3934/math.2022005 doi: 10.3934/math.2022005
![]() |
[23] |
S. K. Ntouyas, B. Ahmad, J. Tariboon, Nonlocal $\psi$-Hilfer generalized proportional boundary value problems for fractional differential equations and inclusions, Foundations, 2 (2022), 377–398. https://doi.org/10.3390/foundations2020026 doi: 10.3390/foundations2020026
![]() |
[24] |
A. Samadi, S. K. Ntouyas, B. Ahmad, J. Tariboon, Investigation of a nonlinear coupled $(k, {\psi})$-Hilfer fractional differential system with coupled $(k, \psi)$-Riemann-Liouville fractional integral boundary conditions, Foundations, 2 (2022), 918–933. https://doi.org/10.3390/foundations2040063 doi: 10.3390/foundations2040063
![]() |
[25] |
A. Samadi, S. K. Ntouyas, J. Tariboon, On a nonlocal coupled system of Hilfer generalized proportional fractional differential equations, Symmetry, 14 (2022), 738. https://doi.org/10.3390/sym14040738 doi: 10.3390/sym14040738
![]() |
[26] |
S. K. Ntouyas, B. Ahmad, J. Tariboon, Coupled systems of nonlinear proportional fractional differential equations of Hilfer-type with multi-point and integro-multi-strip boundary conditions, Foundations, 3 (2023), 241–259. https://doi.org/10.3390/foundations3020020 doi: 10.3390/foundations3020020
![]() |
[27] |
I. Mallah, I. Ahmed, A. Akgul, F. Jarad, S. Alha, On $\psi$-Hilfer generalized proportional fractional operators, AIMS Math., 7 (2022), 82–103. https://doi.org/10.3934/math.2022005 doi: 10.3934/math.2022005
![]() |
[28] | A. Granas, J. Dugundji, Fixed point theory, Springer, 2003. |
[29] | M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127. |
[30] | K. Deimling, Nonlinear functional analysis, Springer, 1985. |