Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence of a pullback attractor for a nonautonomous parabolic of type Cahn-Hilliard phase-field system. The pullback attractor is a compact set, invariant with respect to the cocycle and which attracts the solutions in the neighborhood of minus infinity, consequently the attractor pullback (or attractor retrograde) exhibits a infinite fractal dimension.
Citation: Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko. Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system[J]. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123
Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence of a pullback attractor for a nonautonomous parabolic of type Cahn-Hilliard phase-field system. The pullback attractor is a compact set, invariant with respect to the cocycle and which attracts the solutions in the neighborhood of minus infinity, consequently the attractor pullback (or attractor retrograde) exhibits a infinite fractal dimension.
[1] | B. Saoud, Attracteurs pour des systemes dissipatifs autonomous et nonautonomous, These unique, Faculté des Sciences Fondamentales et Appliquées. Université de Poitiers, 92 (2013), 1308–1321. |
[2] | H. Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maitrise. Théorie et applications, Masson, Paris., 4 (1983), 883–903. |
[3] | J. W. Cahn, J. E. Hilliard, Free energy of a non-uniform system interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[4] | T. Caraballo, J. A. Langa, On the uper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems, Dyn. Contin. Discete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491–513. |
[5] | T. Caraballo, G. Lukaszewicz, J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484–498. https://doi.org/10.1016/j.na.2005.03.111 doi: 10.1016/j.na.2005.03.111 |
[6] | D. N. Cheban, P. E. Kloeden, B. Schmalfuss, The relationship between pullback, forward for global attractors of nonautonomous dynamical systems, Nonlinear Dynamics and Systems Theory, 2 (2002), 125–144. |
[7] | H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory and Related Fields, 100 (1994), 365–393. https://doi.org/10.1007/BF01193705 doi: 10.1007/BF01193705 |
[8] | M. Efendiev, A. Miranville, S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A., 135 (2005), 703–730. https://doi.org/10.1017/S030821050000408 doi: 10.1017/S030821050000408 |
[9] | M. Efendiev, A. Miranville, S. Zelik, Infinite dimensional exponential attractors for a non-autonomous reaction-diffusion system, Math. Nach., 248 (2003), 72–96. https://doi.org/10.1002/mana.200310004 doi: 10.1002/mana.200310004 |
[10] | X. Fan, Y. Wang, Attractors for a second order nonautonomous lattice dynamical system with nonlinear damping, Phys. Lett. A, 365 (2007), 17–27. https://doi.org/10.1016/j.physleta.200612.045 doi: 10.1016/j.physleta.200612.045 |
[11] | F. Flandoli, B. Schmalfuss, Random attractors for the 3D Stochastic Navier-Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21–45. https://doi.org/10.1080/17442509608834083 doi: 10.1080/17442509608834083 |
[12] | J. K. Hale, Asymptotic Behavvior of Dissipative systems, American Mathematical Society, Providence, R.I., 25 (1988), 175–183. https://doi.org/10.1080/S0273-0979-1990-15875-6 doi: 10.1080/S0273-0979-1990-15875-6 |
[13] | P. E. Kloeden, D. J. Stonier., Cocycle attractors in nonautonomous perturbed differential equations, Dyn. Contin. Discrete Impuls.Syst. ser. A., 4 (1997), 211–226. |
[14] | P. E. Kloeden, B. Schmalfuss, Asymptotic behaviour of nonautonomous differential inclusions Systems, Syst. Control Lett., 33 (1998), 275–280. https://doi.org/10.1016/S0167-6911(97)00107-2 doi: 10.1016/S0167-6911(97)00107-2 |
[15] | R. Czaja, P. Marın-Rubio, Pullback Exponential Attractors for Parabolic Equations with Dynamical Boundary Conditions, Distcrete Contin. Dyn. Syst., 21 (2017), 819–839. https://doi.org/10.11650/tjm/7862 doi: 10.11650/tjm/7862 |
[16] | Q. F. Ma, S. H. Wang, C. K. Zhong, Necessary and sufficient condition for the existence of global attractors for the semigroup and applications, Indiana Univ. Math. J., 51 (2002), 1541–1559. http://dx.doi.org/10.1512/iumj.2002.51.2255 doi: 10.1512/iumj.2002.51.2255 |
[17] | J. D. Mangoubi, D. Moukoko, F. Moukamba, F. D. R. Langa, Existence and uniqueness of solution for Cahn-Hilliard Hyperbolic phase-field system with Dirichlet boundary condition and regular potentials, Applied Mathematics, 51 (2016), 1919–1926. https://doi.org/10.4236/am.2016.716157 doi: 10.4236/am.2016.716157 |
[18] | A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Handbook of differential equations: evolutionary equations, 4 (2008), 103–200. https://doi.org/10.1016/S1874-5717(08)00003-0 doi: 10.1016/S1874-5717(08)00003-0 |
[19] | H. Song, H. Wu, Pullback attractors of nonautonomous reaction-diffusion equation, J. Math. Anal. Appl., 68 (2006), 1200–1215. https://doi.org/10.1016/j.jmaa.2006.02.041 doi: 10.1016/j.jmaa.2006.02.041 |
[20] | R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0645-3 |
[21] | Y. Wang, Pullback attractors for nonautonomous wave equations with critical exponent, J. Appl. Dynam. Syst., 68 (2008), 365–376. https://doi.org/10.1016/j.na.2006.11.002 doi: 10.1016/j.na.2006.11.002 |
[22] | S. F. Zhou, F. Q. Yin, Z. G. Ouyang, Random attractor for damped nonlinear wave equation with white noise, J. Appl. Dynam. Syst., 4 (2005), 883–903. https://doi.org/10.1137/050623097 doi: 10.1137/050623097 |