Research article

Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system

  • Received: 08 April 2023 Revised: 27 June 2023 Accepted: 27 June 2023 Published: 12 July 2023
  • MSC : 35B41, 35B45, 35K55

  • Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence of a pullback attractor for a nonautonomous parabolic of type Cahn-Hilliard phase-field system. The pullback attractor is a compact set, invariant with respect to the cocycle and which attracts the solutions in the neighborhood of minus infinity, consequently the attractor pullback (or attractor retrograde) exhibits a infinite fractal dimension.

    Citation: Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko. Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system[J]. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123

    Related Papers:

  • Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence of a pullback attractor for a nonautonomous parabolic of type Cahn-Hilliard phase-field system. The pullback attractor is a compact set, invariant with respect to the cocycle and which attracts the solutions in the neighborhood of minus infinity, consequently the attractor pullback (or attractor retrograde) exhibits a infinite fractal dimension.



    加载中


    [1] B. Saoud, Attracteurs pour des systemes dissipatifs autonomous et nonautonomous, These unique, Faculté des Sciences Fondamentales et Appliquées. Université de Poitiers, 92 (2013), 1308–1321.
    [2] H. Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maitrise. Théorie et applications, Masson, Paris., 4 (1983), 883–903.
    [3] J. W. Cahn, J. E. Hilliard, Free energy of a non-uniform system interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [4] T. Caraballo, J. A. Langa, On the uper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems, Dyn. Contin. Discete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491–513.
    [5] T. Caraballo, G. Lukaszewicz, J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484–498. https://doi.org/10.1016/j.na.2005.03.111 doi: 10.1016/j.na.2005.03.111
    [6] D. N. Cheban, P. E. Kloeden, B. Schmalfuss, The relationship between pullback, forward for global attractors of nonautonomous dynamical systems, Nonlinear Dynamics and Systems Theory, 2 (2002), 125–144.
    [7] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory and Related Fields, 100 (1994), 365–393. https://doi.org/10.1007/BF01193705 doi: 10.1007/BF01193705
    [8] M. Efendiev, A. Miranville, S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A., 135 (2005), 703–730. https://doi.org/10.1017/S030821050000408 doi: 10.1017/S030821050000408
    [9] M. Efendiev, A. Miranville, S. Zelik, Infinite dimensional exponential attractors for a non-autonomous reaction-diffusion system, Math. Nach., 248 (2003), 72–96. https://doi.org/10.1002/mana.200310004 doi: 10.1002/mana.200310004
    [10] X. Fan, Y. Wang, Attractors for a second order nonautonomous lattice dynamical system with nonlinear damping, Phys. Lett. A, 365 (2007), 17–27. https://doi.org/10.1016/j.physleta.200612.045 doi: 10.1016/j.physleta.200612.045
    [11] F. Flandoli, B. Schmalfuss, Random attractors for the 3D Stochastic Navier-Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21–45. https://doi.org/10.1080/17442509608834083 doi: 10.1080/17442509608834083
    [12] J. K. Hale, Asymptotic Behavvior of Dissipative systems, American Mathematical Society, Providence, R.I., 25 (1988), 175–183. https://doi.org/10.1080/S0273-0979-1990-15875-6 doi: 10.1080/S0273-0979-1990-15875-6
    [13] P. E. Kloeden, D. J. Stonier., Cocycle attractors in nonautonomous perturbed differential equations, Dyn. Contin. Discrete Impuls.Syst. ser. A., 4 (1997), 211–226.
    [14] P. E. Kloeden, B. Schmalfuss, Asymptotic behaviour of nonautonomous differential inclusions Systems, Syst. Control Lett., 33 (1998), 275–280. https://doi.org/10.1016/S0167-6911(97)00107-2 doi: 10.1016/S0167-6911(97)00107-2
    [15] R. Czaja, P. Marın-Rubio, Pullback Exponential Attractors for Parabolic Equations with Dynamical Boundary Conditions, Distcrete Contin. Dyn. Syst., 21 (2017), 819–839. https://doi.org/10.11650/tjm/7862 doi: 10.11650/tjm/7862
    [16] Q. F. Ma, S. H. Wang, C. K. Zhong, Necessary and sufficient condition for the existence of global attractors for the semigroup and applications, Indiana Univ. Math. J., 51 (2002), 1541–1559. http://dx.doi.org/10.1512/iumj.2002.51.2255 doi: 10.1512/iumj.2002.51.2255
    [17] J. D. Mangoubi, D. Moukoko, F. Moukamba, F. D. R. Langa, Existence and uniqueness of solution for Cahn-Hilliard Hyperbolic phase-field system with Dirichlet boundary condition and regular potentials, Applied Mathematics, 51 (2016), 1919–1926. https://doi.org/10.4236/am.2016.716157 doi: 10.4236/am.2016.716157
    [18] A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Handbook of differential equations: evolutionary equations, 4 (2008), 103–200. https://doi.org/10.1016/S1874-5717(08)00003-0 doi: 10.1016/S1874-5717(08)00003-0
    [19] H. Song, H. Wu, Pullback attractors of nonautonomous reaction-diffusion equation, J. Math. Anal. Appl., 68 (2006), 1200–1215. https://doi.org/10.1016/j.jmaa.2006.02.041 doi: 10.1016/j.jmaa.2006.02.041
    [20] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0645-3
    [21] Y. Wang, Pullback attractors for nonautonomous wave equations with critical exponent, J. Appl. Dynam. Syst., 68 (2008), 365–376. https://doi.org/10.1016/j.na.2006.11.002 doi: 10.1016/j.na.2006.11.002
    [22] S. F. Zhou, F. Q. Yin, Z. G. Ouyang, Random attractor for damped nonlinear wave equation with white noise, J. Appl. Dynam. Syst., 4 (2005), 883–903. https://doi.org/10.1137/050623097 doi: 10.1137/050623097
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1098) PDF downloads(61) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog