Citation: Muhammad Altaf Khan, Sajjad Ullah, Saif Ullah, Muhammad Farhan. Fractional order SEIR model with generalized incidence rate[J]. AIMS Mathematics, 2020, 5(4): 2843-2857. doi: 10.3934/math.2020182
[1] | M. A. Khan, Q. Badshah, S. Islam, et al. Global dynamics of SEIRS epidemic model with non-linear generalized incidences and preventive vaccination, Adv. Diff. Equ., 2015 (2015), 88. |
[2] | S. Ullah, M. A. Khan, and J. F. Gomez-Aguilar, Mathematical formulation of hepatitis B virus with optimal control analysis, Optim. Cont. Appl. Meth., 40 (2019), 1-17. doi: 10.1002/oca.2459 |
[3] | F. B. Agusto and M. A. Khan, Optimal control strategies for dengue transmission in Pakistan, Math. Biosci., 305 (2018), 102-121. doi: 10.1016/j.mbs.2018.09.007 |
[4] | M. A. Khan, K. Shah, Y. Khan, et al. Mathematical modeling approach to the transmission dynamics of pine wilt disease with saturated incidence rate, Int. J. Biomath., 11 (2018), 1850035. |
[5] | F. Rao, P. S. Mandal and Y. Kang, Complicated endemics of an SIRS model with a generalized incidence under preventive vaccination and treatment controls, Appl. Math. Model., 67 (2019), 38-61. doi: 10.1016/j.apm.2018.10.016 |
[6] | W. O. Kermack, A. G. MCKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721. doi: 10.1098/rspa.1927.0118 |
[7] | V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 41-61. |
[8] | A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60. doi: 10.3934/mbe.2004.1.57 |
[9] | A. Denes, G. Rost, Global stability for SIR and SIRS models with nonlinear incidence and removal terms via dulac functions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1101-1117. doi: 10.3934/dcdsb.2016.21.1101 |
[10] | D. P. Gao, N. J. Huang, S. M. Kang, et al. Global stability analysis of an SVEIR epidemic model with general incidence rate, Bound. Value Probl., 2018 (2018), 42. |
[11] | D. P. Ahokpossi, A. Atangana and D. P. Vermeulen, Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law, Eur. Phy. J. Plus, 132 (2017), 165. |
[12] | S. Ullah, M. A. Khan and M. Farooq, A fractional model for the dynamics of TB virus, Cha. Solit. Frac., 116 (2018), 63-71. doi: 10.1016/j.chaos.2018.09.001 |
[13] | M. A. Khan, Y. Khan and S. Islam, Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment, Phy. A, 493 (2018), 210-227. doi: 10.1016/j.physa.2017.10.038 |
[14] | Y. Khan, N. Faraz, A. Yildirim, et al. Fractional variational iteration method for fractional initialboundary value problems arising in the application of nonlinear science, Comput. Math. Appl., 62 (2011), 2273-2278. doi: 10.1016/j.camwa.2011.07.014 |
[15] | Y. Khan, Q. Wu, N. Faraz, et al. A new fractional analytical approach via a modified RiemannLiouville derivative, Appl. Math. Lett., 25 (2012), 1340-1346. doi: 10.1016/j.aml.2011.11.041 |
[16] | Y. Khan, N. Faraz, S. KUMARA, et al. A coupling method of homotopy perturbation and Laplace transformation for fractional models, U.P.B. Sci. Bull. Series A, 74 (2012), 57-68. |
[17] | Y. X. Jun, D. Baleanu, Y. Khan, et al. Local Fractional Variational Iteration Method for Diffusion and Wave Equations on Cantor Sets, Rom. J. Phys., 59 (2014), 36-48. |
[18] | I. Podlubny, Fractional Differential Equations, Academic Press, California, USA, 1999. |
[19] | M. Caputo and M. Fabrizio, A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. |
[20] | A. Atangana and D. Baleanu, New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[21] | M. Saeedian, M. Khalighi, N. Azimi-Tafreshi, et al. Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model, Phy. Rev. E, 95 (2017), 022409. |
[22] | A. Mouaouine, A. Boukhouima, K. Hattaf, et al. A fractional order SIR epidemic model with nonlinear incidence rate, Adv. Diff. Eq., 2018 (2018), 1-9. doi: 10.1186/s13662-017-1452-3 |
[23] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications, CRC, 1993. |
[24] | H. Delavari, D. Baleanu and J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67 (2012), 2433-2439. doi: 10.1007/s11071-011-0157-5 |
[25] | C. V. D. Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75-85. doi: 10.1016/j.cnsns.2014.12.013 |
[26] | J. Li, Y. Yang, Y. Xiao, et al. A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence, J. Appl. Anal. Comput., 6 (2016), 38-46. doi: 10.1016/j.cam.2016.01.044 |
[27] | Z. M. Odibat and N. T. Shawagfeh, Generalized Taylors formula, Appl. Math. Comput., 186 (2007), 286-293. |
[28] | W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709-726. doi: 10.1016/j.jmaa.2006.10.040 |
[29] | J. J. Wang, J. Z. Zhang and Z. Jin, Analysis of an SIR model with bilinear incidence rate, Nonlinear Anal-Real, 11 (2010), 2390-2402. doi: 10.1016/j.nonrwa.2009.07.012 |
[30] | X. Liu and L. Yang, Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear Anal-Real, 13 (2012), 2671-2679. doi: 10.1016/j.nonrwa.2012.03.010 |
[31] | J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331-341. doi: 10.2307/3866 |
[32] | D. L. DeAngelis, R. A. Goldstein and R. V. ONeill, A model for tropic interaction, Ecology, 56 (1975), 881-892. doi: 10.2307/1936298 |
[33] | K. Hattaf, M. Mahrouf, J. Adnani, et al. Qualitative analysis of a stochastic epidemic model with specific functional response cand temporary immunity, Phys. A, 490 (2018), 591-600. doi: 10.1016/j.physa.2017.08.043 |