In this article, we study a Caputo fractional model, namely, the time fractional damped Burger equation. As the main mathematical tool of this article, we apply a new approximate method which is called the approximate-analytical method (AAM) to deal with the time fractional damped Burger equation. Then, a new approximate solution of this considered equation was obtained. It may be used to characterize nonlinear phenomena of the shallow water wave phenomena. Thereby, it provides a new window for us to find the time fractional damped Burger equation new evolutionary mechanism.
Citation: Jian-Gen Liu, Jian Zhang. A new approximate method to the time fractional damped Burger equation[J]. AIMS Mathematics, 2023, 8(6): 13317-13324. doi: 10.3934/math.2023674
In this article, we study a Caputo fractional model, namely, the time fractional damped Burger equation. As the main mathematical tool of this article, we apply a new approximate method which is called the approximate-analytical method (AAM) to deal with the time fractional damped Burger equation. Then, a new approximate solution of this considered equation was obtained. It may be used to characterize nonlinear phenomena of the shallow water wave phenomena. Thereby, it provides a new window for us to find the time fractional damped Burger equation new evolutionary mechanism.
[1] | D. J. Kaup, C. N. Alan, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19 (1978), 798–801. https://doi.org/10.1063/1.523737 doi: 10.1063/1.523737 |
[2] | K. R. Rajagopal, A. S. Gupta, An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate, Meccanica, 19 (1984), 158–160. https://doi.org/10.1007/BF01560464 doi: 10.1007/BF01560464 |
[3] | X. Li, L. Wang, Z. Zhou, Y. Chen, Z. Yan, Stable dynamics and excitations of single-and double-hump solitons in the Kerr nonlinear media with $PT$-symmetric HHG potentials, Nonl. Dyn., 108 (2022), 4045–4056. https://doi.org/10.1007/s11071-022-07362-1 doi: 10.1007/s11071-022-07362-1 |
[4] | J. G. Liu, X. J. Yang, Y. Y. Feng, P. Cui, Nonlinear dynamic behaviors of the generalized (3+1)-dimensional KP equation, Z. Angew. Math. Mech., 102 (2022), e202000168. https://doi.org/10.1002/zamm.202000168 |
[5] | J. G. Liu, X. J. Yang, J. J. Wang, A new perspective to discuss Korteweg-de Vries-like equation, Phys. Lett. A, 451 (2022), 128429. https://doi.org/10.1016/j.physleta.2022.128429 doi: 10.1016/j.physleta.2022.128429 |
[6] | S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press, 2003. |
[7] | M. A. Bayrak, A. Demir, A new approach for space-time fractional partial differential equations by residual power series method, Appl. Math. Comput., 336 (2018), 215–230. https://doi.org/10.1016/j.amc.2018.04.032 doi: 10.1016/j.amc.2018.04.032 |
[8] | J. G. Liu, X. J. Yang, L. L Geng, X. J Yu, On fractional symmetry group scheme to the higher dimensional space and time fractional dissipative Burgers equation, Int. J. Geom. Meth. Moder. Phys., 19 (2022), 2250173. https://doi.org/10.1142/S0219887822501730 doi: 10.1142/S0219887822501730 |
[9] | J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fractals, 2023. https://doi.org/10.1142/S0218348X23500330 |
[10] | X. Y. Li, B. Y. Wu, Iterative reproducing kernel method for nonlinear variable-order space fractional diffusion equations, Int. J. Comput. Math., 95 (2018), 1210–1221. https://doi.org/10.1080/00207160.2017.1398325 doi: 10.1080/00207160.2017.1398325 |
[11] | H. Thabet, S. D. Kendre, J. F. Peters, Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method, AIMS Mathematics, 4 (2019), 1203. https://doi.org/10.3934/math.2019.4.1203 doi: 10.3934/math.2019.4.1203 |
[12] | G. Zhang, D. Zhou, D. Mortari, An approximate analytical method for short-range impulsive orbit rendezvous using relative Lambert solutions, Acta. Astr., 81 (2012), 318–324. https://doi.org/10.1016/j.actaastro.2012.05.037 doi: 10.1016/j.actaastro.2012.05.037 |
[13] | E. A. Ahmad, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004 |
[14] | M. J. Khan, R. Nawaz, S. Farid, J. Iqbal, New iterative method for the solution of fractional damped burger and fractional Sharma-Tasso-Olver equations, Complexity, 2018 (2018), 3249720. https://doi.org/10.1155/2018/3249720 doi: 10.1155/2018/3249720 |
[15] | H. Bateman, Some recent researches on the motion of fluids, Mon. Weath. Rev., 43 (1915), 163–170. |
[16] | J. M. Burger, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948), 171–199. https://doi.org/10.1016/S0065-2156(08)70100-5 doi: 10.1016/S0065-2156(08)70100-5 |
[17] | M. Inc, The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007 |
[18] | T. Guo, D. Xu, W. Qiu, Efficient third-order BDF finite difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 140 (2023), 108570. https://doi.org/10.1016/j.aml.2023.108570 doi: 10.1016/j.aml.2023.108570 |
[19] | T. Guo, M. A. Zaky, A. S. Hendy, Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations, Appl. Numer. Math., 185 (2023), 260–277. https://doi.org/10.1016/j.apnum.2022.11.023 doi: 10.1016/j.apnum.2022.11.023 |
[20] | X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simul., 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004 |
[21] | W. Qiu, H. Chen, X. Zheng, An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations, Math. Comput. Simul., 166 (2019), 298–314. https://doi.org/10.1016/j.matcom.2019.05.017 doi: 10.1016/j.matcom.2019.05.017 |
[22] | P. Agarwal, S. Jain, T. Mansour, Further extended Caputo fractional derivative operator and its applications, Russian. J. Math. Phys., 24 (2017), 415–425. https://doi.org/10.1134/S106192081704001X doi: 10.1134/S106192081704001X |
[23] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential equations, New York: Wiley, 1993. |