Within the framework of time fractional calculus using the Caputo operator, the Aboodh residual power series method and the Aboodh transform iterative method were implemented to analyze three basic equations in mathematical physics: the heat equation, the diffusion equation, and Burger's equation. We investigated the analytical solutions of these equations using Aboodh techniques, which provide practical and precise methods for solving fractional differential equations. We clarified the behavior and properties of the obtained approximations using the suggested methods through exact mathematical derivations and computational analysis. The obtained approximations were analyzed numerically and graphically to verify their high accuracy and stability against different related parameters. Additionally, we examined the impact of varying the fractional parameter the profiles of all derived approximations. Our results confirm these methods, efficacy in capturing the complicated dynamics of fractional systems. Therefore, they enhance the comprehension and examination of time-fractional equations in many scientific and technical contexts and in modeling different physical problems related to fluid mediums and plasma physics.
Citation: Humaira Yasmin, Aljawhara H. Almuqrin. Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies[J]. AIMS Mathematics, 2024, 9(6): 16721-16752. doi: 10.3934/math.2024811
[1] | Musawa Yahya Almusawa, Hassan Almusawa . Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533 |
[2] | Nader Al-Rashidi . Innovative approaches to fractional modeling: Aboodh transform for the Keller-Segel equation. AIMS Mathematics, 2024, 9(6): 14949-14981. doi: 10.3934/math.2024724 |
[3] | M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy . Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324 |
[4] | Muhammad Imran Liaqat, Sina Etemad, Shahram Rezapour, Choonkil Park . A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics, 2022, 7(9): 16917-16948. doi: 10.3934/math.2022929 |
[5] | Humaira Yasmin, Aljawhara H. Almuqrin . Efficient solutions for time fractional Sawada-Kotera, Ito, and Kaup-Kupershmidt equations using an analytical technique. AIMS Mathematics, 2024, 9(8): 20441-20466. doi: 10.3934/math.2024994 |
[6] | Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358 |
[7] | Mariam Sultana, Muhammad Waqar, Ali Hasan Ali, Alina Alb Lupaş, F. Ghanim, Zaid Ameen Abduljabbar . Numerical investigation of systems of fractional partial differential equations by new transform iterative technique. AIMS Mathematics, 2024, 9(10): 26649-26670. doi: 10.3934/math.20241296 |
[8] | Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088 |
[9] | Meshari Alesemi . Innovative approaches of a time-fractional system of Boussinesq equations within a Mohand transform. AIMS Mathematics, 2024, 9(10): 29269-29295. doi: 10.3934/math.20241419 |
[10] | Ali Khalouta, Abdelouahab Kadem . A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients. AIMS Mathematics, 2020, 5(1): 1-14. doi: 10.3934/math.2020001 |
Within the framework of time fractional calculus using the Caputo operator, the Aboodh residual power series method and the Aboodh transform iterative method were implemented to analyze three basic equations in mathematical physics: the heat equation, the diffusion equation, and Burger's equation. We investigated the analytical solutions of these equations using Aboodh techniques, which provide practical and precise methods for solving fractional differential equations. We clarified the behavior and properties of the obtained approximations using the suggested methods through exact mathematical derivations and computational analysis. The obtained approximations were analyzed numerically and graphically to verify their high accuracy and stability against different related parameters. Additionally, we examined the impact of varying the fractional parameter the profiles of all derived approximations. Our results confirm these methods, efficacy in capturing the complicated dynamics of fractional systems. Therefore, they enhance the comprehension and examination of time-fractional equations in many scientific and technical contexts and in modeling different physical problems related to fluid mediums and plasma physics.
Hermite-Hadamard inequality is a double inequality for convex functions that has a lot of literary value (please see [16]).
Let ζ:I⟶R, ∅≠I⊆R, ς,τ∈I with ς<τ, be a convex function. Then
ζ(ς+τ2)≤1τ−ςτ∫ςζ(w)dw≤ζ(ς)+ζ(τ)2, | (1.1) |
the inequality holds in reversed direction if ζ is concave.
Fejér [15] established the following double inequality as a weighted generalization of (1.1):
ζ(ς+τ2)τ∫ςϑ(w)dw≤τ∫ςζ(w)ϑ(w)dw≤ζ(ς)+ζ(τ)2τ∫ςϑ(w)dw, | (1.2) |
where ζ:I⟶R, ∅≠I⊆R, ς,τ∈I with ς<τ is any convex function and ϑ:[ς,τ]→R is non-negative integrable and symmetric with respect to w=ς+τ2.
These inequalities have many extensions and generalizations, see [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] and [19,20,21,22,23,24,25,26,27,28,29,30,31].
Consider the following mappings on [0,1]:
˘G(ι)=12τ∫ς[ζ(ις+(1−ι)ς+τ2)+ζ(ιτ+(1−ι)ς+τ2)]dw, |
H(ι)=1τ−ςτ∫ςζ(ιw+(1−ι)ς+τ2)dw, |
Hϑ(ι)=1τ−ςτ∫ςζ(ιw+(1−ι)ς+τ2)ϑ(w)dw, |
L(ι)=12(τ−ς)τ∫ς[ζ(ις+(1−ι)w)+ζ(ιτ+(1−ι)w)]dw |
and
Lϑ(ι)=12τ∫ς[ζ(ις+(1−ι)w)+ζ(ιτ+(1−ι)w)]ϑ(w)dw, |
where ζ:[ς,τ]→R is a convex function and ϑ:[ς,τ]→R is non-negative integrable and symmetric with respect to w=ς+τ2.
The important results that characterize the properties of the above mappings and inequalities are discussed by a number of mathematicians.
Dragomir [2] established the theorem which refines the first inequality of (1.1).
Theorem 1. [2] Let ζ:[ς,τ]→R be a convex function on [ς,τ]. Then H is monotonically increasing and convex on [0,1]. Moreover, one has thefollowing inequalities
ζ(ς+τ2)=H(0)≤H(ι)≤H(1)=1τ−ς∫τςζ(w)dw. |
Dragomir et al. [7] obtained the refinements of (1.1).
Theorem 2. [2] Let ζ, H be defined asabove. Then
(i) The following inequality holds
ζ(ς+τ2)≤2τ−ς∫ς+3τ43ς+τ4ζ(w)dw≤∫10H(ι)dι≤12[ζ(ς+τ2)+1τ−ς∫τςζ(w)dw]. |
(ii) If ζ is differentiable on [ς,τ], then for all ι∈[0,1], one has
0≤1τ−ς∫τςζ(w)dw−H(ι)≤(1−ι)[ζ(ς)+ζ(τ)2−1τ−ς∫τςζ(w)dw] |
and
0≤ζ(ς)+ζ(τ)2−H(ι)≤(ζ′(τ)−ζ′(ς))(τ−ς)4. |
Theorem 3. [7] Let ζ, H, ˘G be defined as above. We have
(i) ˘G is convex and increasing on [0,1].
(ii) The following hold
infι∈[0,1]˘G(ι)=˘G(0)=ζ(ς+τ2) |
and
supι∈[0,1]˘G(ι)=˘G(1)=ζ(ς)+ζ(τ)2. |
(iii) The inequality
H(ι)≤˘G(ι) |
holds for all ι∈[0,1].
(iv) Then
2τ−ς∫ς+3τ43ς+τ4ζ(w)dw≤12[ζ(3ς+τ4)+ζ(ς+3τ4)]≤∫10˘G(ι)dι≤12[ζ(ς+τ2)+ζ(ς)+ζ(τ)2]. |
(v) If ζ is differentiable on [ς,τ], then for all ι∈[0,1], one has
0≤H(ι)−ζ(ς+τ2)≤˘G(ι)−H(ι). |
Theorem 4. [7] Let ζ, H, ˘G, L be defined as above. Then
(i) L is convex on [0,1].
(ii) The inequalities
˘G(ι)≤L(ι)≤1−ιτ−ς∫τςζ(w)dw+ιζ(ς)+ζ(τ)2≤ζ(ς)+ζ(τ)2 |
hold for all ι∈[0,1] and
supι∈[0,1]L(ι)=L(1)=ζ(ς)+ζ(τ)2. |
(iii) The inequalities
H(1−ι)≤L(ι)andH(ι)+H(1−ι)2≤L(ι) |
hold for all ι∈[0,1].
Teseng et al. [24] proved the following result.
Lemma 1. [24] Let ζ: [ς,τ]→R be a convex function and let ς≤˘ϰ1≤w1≤w2≤˘ϰ2≤τ with w1+w2=˘ϰ1+˘ϰ2. Then
ζ(w1)+ζ(w2)≤ζ(˘ϰ1)+ζ(˘ϰ2). |
Yang and Tseng [28] proven the theorem by using Lemma 1 which refines the first inequality of (1.2) and generalizes Theorem 1.
Theorem 5. [28] Let ζ:[ς,τ]→R be a convex function and ϑ:[ς,τ]→R is non-negative integrable and symmetric with respect to w=ς+τ2. Then Hϑ is convex, increasing on [0,1], and for all ι∈[0,1], we have
ζ(ς+τ2)∫τςϑ(w)dw=Hϑ(0)≤Hϑ(ι)≤Hϑ(1)=∫τςζ(w)ϑ(w)dw. | (1.3) |
One of the generalizations of the convex functions is harmonic functions:
Definition 1. [17] Define I⊆R∖{0} as an interval of real numbers. A function ζ from I to the real numbers is considered to be harmonically convex, if
ζ(w˘ϰιw+(1−ι)˘ϰ)≤ιζ(˘ϰ)+(1−ι)ζ(w) | (1.4) |
for all w,˘ϰ∈I and ι∈[0,1]. Harmonically concave ζ is defined as the inequality in (1.4) reversed.
İşcan [17] used harmonic-convexity to develop the inequalities of Hermite-Hadamard type.
Theorem 6. [17] Let ζ:I⊆R∖{0}→R be a harmonically convex function and ς,τ∈I with ς<τ. If ζ∈L([ς,τ]) then theinequalities
ζ(2ςτς+τ)≤ςττ−ς∫ςτζ(w)w2dw≤ζ(ς)+ζ(τ)2 | (1.5) |
hold.
Let ζ:[ς,τ]⊂(0,∞)→R be a harmonic convex mapping and let S,V:[0,1]→R be defined by
S(ι)=ςττ−ς∫τς1w2ζ(2ςτw2ςτι+(1−ι)w(ς+τ))dw | (1.6) |
and
V(ι)=ςτ2(τ−ς)∫τς1w2[ζ(2τw(1+ι)w+(1−ι)τ)+ζ(2ςw(1+ι)w+(1−ι)ς)]dw. | (1.7) |
The author obtained the refinement inequalities for (1.5) related to the above mappings:
Theorem 7. [21] Let ζ:[ς,τ]⊂(0,∞)→R be a harmonic convex function on [ς,τ]. Then
(i) S is harmonic convex (0,1] andincreases monotonically on [0,1].
(ii) The following hold:
ζ(2ςτς+τ)=S(0)≤S(ι)≤S(1)=ςττ−ς∫τςζ(w)w2dw. |
Theorem 8. [21] Let ζ:[ς,τ]⊂(0,∞)→R be a harmonic convex function on [ς,τ]. Then
(i) V is harmonic convex (0,1] andincreases monotonically on [0,1].
(ii) The following hold:
ςττ−ς∫τςζ(w)w2dw=V(0)≤V(ι)≤V(1)=ζ(ς)+ζ(τ)2. |
Harmonic symmetricity of a function is given in the definition below.
Definition 2. [22] A function ϑ:[ς,τ]⊆R∖{0}→R is harmonically symmetric with respect to 2ςτς+τ if
ϑ(w)=ϑ(11ς+1τ−1w) |
holds for all w∈[ς,τ].
Fejér type inequalities using harmonic convexity and the notion of harmonic symmetricity were presented in Chan and Wu [1].
Theorem 9. [1] Let ζ:I⊆R∖{0}→R be a harmonically convex function and ς,τ∈I with ς<τ. If ζ∈L([ς,τ]) and ϑ:[ς,τ]⊆R∖{0}→R is nonnegative, integrable and harmonically symmetric with respect to 2ςτς+τ, then
ζ(2ςτς+τ)∫ςτϑ(w)w2dw≤∫ςτζ(w)ϑ(w)w2dw≤ζ(ς)+ζ(τ)2∫ςτϑ(w)w2dw. | (1.8) |
Chan and Wu [1] also defined some mappings related to (1.8) and discussed important properties of these mappings.
Motivated by the studies conducted in [2,21,24,27], we define some new mappings in connection to (1.8) and to prove new Féjer type inequalities which indeed provide refinement inequalities as well.
To prove the major findings of this work, we employ the given important facts about harmonic convex and convex functions.
Theorem 10. [8,9] If [ς,τ]⊂I⊂(0,∞) and if we consider thefunction ˘h:[1τ,1ς]→R defined by ˘h(ι)=ζ(1ι), then ζ is harmonicallyconvex on [ς,τ] if and only if ˘h is convex in the usual sense on [1τ,1ς].
Theorem 11. [8,9] If I⊂(0,∞) and ζ is convex and nondecreasing function then ζ isharmonic convex and if ζ is harmonic convex and nonincreasing function then ζ is convex.
Let us now define some mappings on [0,1] related to (1.8) and prove some refinement inequalities.
˘G1(ι)=12[ζ(2ςτ2ςι+(1−ι)(ς+τ))+ζ(2ςτ2τι+(1−ι)(ς+τ))]dw, |
S(ι)=ςττ−ςτ∫ς1w2ζ(2ςτw2ςτι+(1−ι)(ς+τ)w)dw, |
Sϑ(ι)=τ∫ςζ(2ςτw2ςτι+(1−ι)(ς+τ)w)ϑ(w)w2dw, |
T(ι)=ςτ2(τ−ς)τ∫ς1w2[ζ(τwιw+(1−ι)τ)+ζ(ςwιw+(1−ι)ς)]dw |
and
Tϑ(ι)=12τ∫ς[ζ(τwιw+(1−ι)τ)+ζ(ςwιw+(1−ι)ς)]ϑ(w)w2dw, |
where ζ:[ς,τ]→R is a harmonic convex function and ϑ:[ς,τ]→R is non-negative integrable and symmetric with respect to w=2ςτς+τ.
Lemma 2. Let ζ: [ς,τ]⊂(0,∞)→R be a harmonic convex function and let ς≤˘ϰ1≤w1≤w2≤˘ϰ2≤τ with w1w2w1+w2=˘ϰ1˘ϰ2˘ϰ1+˘ϰ2. Then
ζ(w1)+ζ(w2)≤ζ(˘ϰ1)+ζ(˘ϰ2). |
Proof. For ˘ϰ1=˘ϰ2, the result is obvious. We observe that
w1=˘ϰ1˘ϰ2(w1˘ϰ1−˘ϰ1˘ϰ2w1˘ϰ1−w1˘ϰ2)˘ϰ2+(˘ϰ1˘ϰ2−w1˘ϰ2w1˘ϰ1−w1˘ϰ2)˘ϰ1andw2=˘ϰ1˘ϰ2(w2˘ϰ1−˘ϰ1˘ϰ2w2˘ϰ1−w2˘ϰ2)˘ϰ2+(˘ϰ1˘ϰ2−w2˘ϰ2w2˘ϰ1−w2˘ϰ2)˘ϰ1. |
By applying the harmonic convexity, we obtain
ζ(w1)+ζ(w2)≤(w1˘ϰ1−˘ϰ1˘ϰ2w1˘ϰ1−w1˘ϰ2)ζ(˘ϰ1)+(˘ϰ1˘ϰ2−w1˘ϰ2w1˘ϰ1−w1˘ϰ2)ζ(˘ϰ2)+(w2˘ϰ1−˘ϰ1˘ϰ2w2˘ϰ1−w2˘ϰ2)ζ(˘ϰ1)+(˘ϰ1˘ϰ2−w2˘ϰ2w2˘ϰ1−w2˘ϰ2)ζ(˘ϰ2)=(w1˘ϰ1−˘ϰ1˘ϰ2w1˘ϰ1−w1˘ϰ2+w2˘ϰ1−˘ϰ1˘ϰ2w2˘ϰ1−w2˘ϰ2)ζ(˘ϰ1)+(˘ϰ1˘ϰ2−w1˘ϰ2w1˘ϰ1−w1˘ϰ2+˘ϰ1˘ϰ2−w2˘ϰ2w2˘ϰ1−w2˘ϰ2)ζ(˘ϰ2)=˘ϰ1˘ϰ2−˘ϰ1((w1+w2w1w2)˘ϰ2−2)ζ(˘ϰ1)+˘ϰ2˘ϰ2−˘ϰ1(2−(w1+w2w1w2)˘ϰ1)ζ(˘ϰ2)=ζ(˘ϰ1)+ζ(˘ϰ2). |
We first prove a result similar to (1.3) for harmonically convex functions which provide refinement inequalities for (1.8).
Theorem 12. Let ζ: [ς,τ]⊂(0,∞)→R be a harmonic convex function, 0<ρ<1, 0<θ<1, λ=ςτρς+(1−ρ)τ, τ0=(ςττ−ς)min{ρ1−θ,1−ρθ} andlet ϑ:[ς,τ]→R be nonnegative and integrable and ϑ(λ1−θιλ)=ϑ(λ1+(1−θ)ιλ), ι∈[0,τ0]. Then
ζ(ςτρς+(1−ρ)τ)∫λ1−θιλλ1+(1−θ)ιλϑ(w)w2dw≤1−θθ∫λλ1−θιλζ(w)ϑ(w)w2dw+θ1−θ∫λ1+(1−θ)ιλλζ(w)ϑ(w)w2dw≤[ρζ(τ)+(1−ρ)ζ(ς)]∫λ1−θιλλ1+(1−θ)ιλϑ(w)w2dw. | (2.1) |
Proof. For every τ∈[0,τ0], we have the identity
∫λ1−θιλλ1+(1−θ)ιλϑ(w)w2dw=∫λλ1+(1−θ)ιλϑ(w)w2dw+∫λ1−θιλλϑ(w)w2dw=θ∫ι0ϑ(λ1−θwλ)w2dw+(1−θ)∫ι0ϑ(λ1−θwλ)w2dw=∫ι0ϑ(λ1−θwλ)w2dw. | (2.2) |
We now prove that the mapping W:[0,τ0]→R defined by
W(ι)=(1−θ)ζ(λ1−θιλ)+θζ(λ1+(1−θ)ιλ) |
is harmonic convex (0,τ0] and monotonically increasing on [0,τ0].
Since the sum of two harmonic convex functions is a harmonic convex, hence W is a harmonic convex on (0,τ0]. Let ι∈(0,τ0], it follows from the harmonic convexity of ζ that
W(ι)=(1−θ)ζ(λ1−θιλ)+θζ(λ1+(1−θ)ιλ)≥ζ((λ1−θιλ)(λ1+(1−θ)ιλ)θ(λ1−θιλ)+(1−θ)(λ1+(1−θ)ιλ))=ζ(λ)=ζ(ςτρς+(1−ρ)τ). | (2.3) |
We observed that 0<ρ≤ρ(τ−ς)+ςτθιτ−ς≤1, 0≤(1−ρ)(τ−ς)−θιςττ−ς≤1−ρ<1, 0≤ρ≤ρ(τ−ς)−(1−θ)ιςττ−ς≤ρ≤1 and 0<1−ρ≤(1−ρ)(τ−ς)+(1−θ)ιςττ−ς≤1. Thus, by using the harmonic convexity, we obtain
W(ι)=(1−θ)ζ(λ1−θιλ)+θζ(λ1+(1−θ)ιλ)=(1−θ)ζ(ςτ(ρ(τ−ς)+ςτιθτ−ς)ς+((1−ρ)(τ−ς)−θιςττ−ς)τ)+θζ(ςτ(ρ(τ−ς)−(1−θ)ιςτ(τ−ς))ς+((1−ρ)(τ−ς)+(1−θ)ιςττ−ς)τ)≤(1−θ)((1−ρ)(τ−ς)−θιςττ−ς)ζ(ς)+(1−θ)×(ρ(τ−ς)+ιςτθτ−ς)ζ(τ)+θ((1−ρ)(τ−ς)+(1−θ)ιςτ(τ−ς))ζ(ς)+θ(ρ(τ−ς)−(1−θ)ιςττ−ς)ζ(τ)=(1−ρ)ζ(ς)+ρζ(τ). | (2.4) |
From (2.3) and (2.4), we obtain
ζ(ςτρς+(1−ρ)τ)≤W(ι)≤(1−ρ)ζ(ς)+ρζ(τ). | (2.5) |
Finally, for ι1, ι2, such that 0<ι1<ι2≤ς0, since W(ι) is harmonic convex, it follows from (2.3) that
W(ι2)−W(ι1)ι2−ι1≥0. |
This shows that W is increasing on [0,τ0].
Since ϑ is nonnegative, multiplying (2.5) by ϑ(λ1−θwλ)w2, integrating the resulting inequalities over [0,ι] and using ϑ(λ1−θwλ)=ϑ(λ1+(1−θ)wλ), we have
ζ(ςτρς+(1−ρ)τ)∫ι0ϑ(λ1−θwλ)w2dw≤(1−θ)∫ι0ζ(λ1−θwλ)ϑ(λ1−θwλ)w2dw+θ∫ι0ζ(λ1+(1−θ)wλ)ϑ(λ1+(1−θ)wλ)w2dw≤[(1−ρ)ζ(ς)+ρζ(τ)]∫ι0ϑ(λ1−θwλ)w2dw. | (2.6) |
By using the identity (2.2) in (2.6), we obtain (2.1).
Remark 1. If we choose ρ=ϑϑ+q, θ=12, ι=2˘ϰ in Theorem 12, then
ζ(ςτ(ϑ+q)ϑς+qτ)∫λ1−λτ˘ϰλ1+λτ˘ϰϑ(w)w2dw≤∫λ1−λτ˘ϰλ1+λτ˘ϰζ(w)ϑ(w)w2dw≤[ϑζ(τ)+qζ(ς)ϑ+q]∫λ1−λτ˘ϰλ1+λτ˘ϰϑ(w)w2dw. | (2.7) |
Remark 2. If we choose ρ= θ=12, ι=τ0=ςττ−ς in Theorem 12, then we get (1.8).
Remark 3. If we choose ρ= θ=12, ι=τ0=ςττ−ς and ϑ(w)=1, w∈[ς,τ] in Theorem 12, then we get (1.5).
Theorem 13. Let ζ, λ and τ0 be defined as in Theorem 12, 0<ρ<1, 0<θ<1, ρ+θ≤1 and let X be defined on [0,1] as
X(ι)=ρςτ(1−θ)(τ−ς)×∫ρςτ(1−θ)(τ−ς)0[(1−θ)ζ(λ1−θιwλ)+θζ(λ1+(1−θ)ιwλ)]dw. | (2.8) |
Then, X is harmonically convex on (0,1] andmonotonically increasing on [0,1], and
ζ(ςτρς+(1−ρ)τ)≤X(ι)≤X(1)=ρςτ(1−θ)(τ−ς)×∫ρςτ(1−θ)(τ−ς)0[(1−θ)ζ(λ1−θwλ)+θζ(λ1+(1−θ)wλ)]dw≤(1−ρ)ζ(ς)+ρζ(τ). |
Proof. Since ζ is harmonically convex on [ς,τ] this prove the harmonic convexity of X on (0,1]. By using the condition ρ+θ≤1 implies that τ0=ρςτ(1−θ)(τ−ς). Since the mapping W:[0,τ0]→R defined by
W(ι)=(1−θ)ζ(λ1−θιλ)+θζ(λ1+(1−θ)ιλ) | (2.9) |
has been proved to be monotonically increasing on [0,τ0], thus the mapping X is also monotonically increasing on [0,1].
Because X is monotonically increasing on [0,1], it follows that the inequalities (2.8) can be deduced from these inequalities (2.5). The proof of the theorem was completed as a result of this.
The next theorem can be proved similarly:
Theorem 14. Let ζ, λ, τ0, ρ and θ be defined as in Theorem 13. Let X1 be defined on [0,1] as
X1(ι)=ρςτ(1−θ)(τ−ς)×∫ρςτ(1−θ)(τ−ς)0[(1−θ)ζ(λ(1−θ)ςτ(1−θ)ςτ−θ(ρ(τ−ς)−w(1−ι)(1−θ)ςτ)λ)+θζ(λ(1−θ)ςτ(1−θ)ςτ+(1−θ)(ρ(τ−ς)−w(1−ι)(1−θ)ςτ)λ)]dw. | (2.10) |
Then, X1 is harmonically convex monotonically increasing on [0,1], and
(1−θ)2ςτρθ(τ−ς)∫(1−θ)ςτ(1−θ)ς−ρ(τ−ς)λζ(w)w2dw+θςτρ(τ−ς)∫λςζ(w)w2dw≤X1(ι)≤X1(1)=(1−θ)ζ((1−θ)ςτ(ς−τ)ρ+(1−θ)τ)+θζ(ς)≤(1−ρ)ζ(ς)+ρζ(τ). | (2.11) |
Remark 4. Taking ρ=θ=12 in the inequality (2.8) reduces to
S(ι)=ςττ−ς∫τςζ(2ςτw2ςτι+(1−ι)w(ς+τ))dww2. |
Remark 5. Taking ρ=θ=12 in the inequality (2.10) reduces to
V(ι)=ςτ2(τ−ς)∫τς1w2[ζ(2τw(1+ι)w+(1−ι)τ)+ζ(2ςw(1+ι)w+(1−ι)ς)]dw. | (2.12) |
Theorem 15. Let ζ, ρ, θ, λ, τ0 be defined as in Theorem 13 and let ϑ be defined as in Theorem 12. Let Y be a function defined on [0,1] by
Y(ι)=∫s0[(1−θ)ζ(λ1−θλιw)ϑ(λ1−θλw)+θζ(λ1+(1−θ)λιw)ϑ(λ1+(1−θ)λw)]dw | (2.13) |
for some s∈[0,τ0]. Then Y isharmonic convex and monotonically increasing on (0,1] and
ζ(ςτρς+(1−ρ)τ)∫λ1−θλsλ1+(1−θ)λsϑ(w)dw≤Y(ι)≤Y(1)=1−θθ∫λλ1−θλsζ(w)ϑ(w)w2dw+θ1−θ∫λ1+(1−θ)λsλζ(w)ϑ(w)w2dw. | (2.14) |
Proof. Since ζ is harmonic convex and ϑ is nonnegative, we see that Y is harmonic convex on (0,1]. Let w∈[0,s], where s∈[0,τ0], from Theorem 12 we get ˘h(ιw)=(1−θ)ζ(λ1−θλιw)+θζ(λ1+(1−θ)λιw) is increasing for ι∈[0,1]. Therefore the inequalities (2.14) are achieved immediately.
Theorem 16. Let ζ, ρ, θ, λ, τ0 be defined as in Theorem 15 and let ϑ be defined as in Theorem 12. Let Y1 be a function defined on [0,1] by
Y1(ι)=∫s0[(1−θ)ζ(λ1−θs+θw(1−ι)λ)ϑ(λ1−θ(s−w)λ)+θζ(λ1+(1−θ)s−(1−θ)w(1−ι)λ)ϑ(λ1+(1−θ)(s−w)λ)]dw | (2.15) |
for some s∈[0,τ0]. Then Y1 isharmonic convex (0,1] and monotonically increasing on [0,1], and
1−θθ∫λλ1−θλsζ(w)ϑ(w)w2dw+θ1−θ∫λ1+(1−θ)λsλζ(w)ϑ(w)w2dw≤Y(ι)≤Y(1)=[(1−θ)ζ(λ1−θsλ)+(1−θ)ζ(λ1+(1−θ)sλ)]×∫λ1+(1−θ)λsλ1−θλsϑ(w)w2dw≤[(1−ρ)ζ(ς)+ρζ(τ)]∫λ1+(1−θ)λsλ1−θλsϑ(w)w2dw. | (2.16) |
Proof. Since ζ is harmonic convex and ϑ is nonnegative, we see that Y1 is harmonic convex on (0,1]. Next, for each w∈[0,ι], where ι∈[0,τ0], it follows from Theorem 12 that ˘h(ι)=(1−θ)ζ(λ1−θλι)+θζ(λ1+(1−θ)λι) and k(ι)=s−(1−ι)w are increasing on [0,τ0] and [0,1] respectively. Hence
˘h(k(ι))=(1−θ)ζ(λ1−θs+θw(1−ι)λ)ϑ(λ1−θ(s−w)λ)+θζ(λ1+(1−θ)s−(1−θ)w(1−ι)λ)ϑ(λ1+(1−θ)(s−w)λ) |
is increasing on [0,1]. Using the identity ϑ(λ1−θλι)=ϑ(λ1+(1−θ)λι) we see that Y(ι) is increasing on [0,1]. Therefore the inequalities (2.16) follows from
ζ(ςτρς+(1−ρ)τ)≤W(k(ι))≤(1−ρ)ζ(ς)+ρζ(τ) |
and (2.16).
Remark 6. Choose ρ=θ=12, s=τ0=ςττ−ς in Theorems 15 and 16. Then the inequalities (2.14) and (2.16) reduce to
ζ(2ςτς+τ)∫τςϑ(w)w2dw≤Y(ι)≤Y(1)=∫τςζ(w)ϑ(w)w2dw≤Y1(ι)≤Y1(1)=ζ(ς)+ζ(τ)2∫τςϑ(w)w2dw, | (2.17) |
where
Y(ι)=ςττ−ς∫τςζ(2ςτw2ςτι+(1−ι)w(ς+τ))ϑ(w)w2dw |
and
Y1(ι)=12∫τς1w2[ζ(2τw(1+ι)w+(1−ι)τ)ϑ(2ςwς+w)+ζ(2ςw(1+ι)w+(1−ι)ς)ϑ(2wτw+τ)]dw. | (2.18) |
Remark 7. The inequalities (2.17) provide weighted generalizations of Theorems 9 and 15.
In the coming results we provide weighted generalizations of Theorems 2–4 for harmonic convex functions by using Lemma 2.
Theorem 17. Let ζ, ϑ, Sϑ be defined as above. Then
(i) The inequality
ζ(2ςτς+τ)∫τςϑ(w)w2dw≤2∫4ςτ3ς+τ4ςτς+3τζ(w)ϑ(2ςτw4ςτ−(ς+τ)w)dww2≤∫10Sϑ(ι)dι≤12[ζ(2ςτς+τ)∫τςϑ(w)w2dw+∫τςζ(w)ϑ(w)w2dw] | (2.19) |
holds.
(ii) If ζ is differentiable on [ς,τ] and ϑ isbounded on [ς,τ], then theinequalities
0≤∫τςζ(w)ϑ(w)w2dw−Sϑ(ι)≤(1−ι)[(τ−ςςτ)[ζ(ς)+ζ(τ)2]−∫τςζ(w)w2dw]‖ϑ‖∞, | (2.20) |
hold for all ι∈[0,1], where ‖ϑ‖∞=supw∈[ς,τ]ϑ(w).
(iii) If ζ is differentiable on [ς,τ], then, for all ι∈[0,1], then
0≤ζ(ς)+ζ(τ)2∫τςϑ(w)w2dw−Sϑ(ι)≤(τ−ς)(τ2ζ′(τ)−ς2ζ′(ς))4ςτ∫τςϑ(w)w2dw. | (2.21) |
Proof. (i) Using techniques of integration and the hypothesis of ϑ, we have the following identities:
ζ(2ςτς+τ)∫τςϑ(w)w2dw=4∫2ςτς+τς∫120ζ(2ςτς+τ)ϑ(w)w2dιdw, | (2.22) |
2∫4ςτ3ς+τ4ςτς+3τζ(w)w2ϑ(2ςτw4ςτ−(ς+τ)w)dw=2∫2ςτς+τς∫120[ζ(4ςτw2ςτ+(ς+τ)w)+ζ(4ςτw3(ς+τ)w−2ςτ)]ϑ(w)w2dιdw, | (2.23) |
∫10Sϑ(ι)dι=∫2ςτς+τς∫120[ζ(2ςτwι(ς+τ)w+2(1−ι)ςτ)+ζ(2ςτw2ςτι+(1−ι)(ς+τ)w)]×ϑ(w)w2dιdw+∫2ςτς+τς∫120[ζ(2ςτw2ι(ςw+τw−ςτ)+(1−ι)(ς+τ)w)+ζ(2ςτw2(1−ι)(ςw+τw−ςτ)+ι(ς+τ)w)]ϑ(w)w2dιdw | (2.24) |
and
12[ζ(2ςτς+τ)∫τςϑ(w)w2dw+∫τςζ(w)ϑ(w)w2dw]=∫2ςτς+τς∫120[ζ(w)+ζ(2ςτς+τ)]ϑ(w)w2dιdw+∫2ςτς+τς∫120[ζ(2ςτς+τ)+ζ(ςτwς+τ−w)]ϑ(w)w2dιdw. | (2.25) |
By using Lemma 2, we observe that the following inequalities hold for all ι∈[0,12] and w∈[ς,2ςτς+τ]:
4ζ(2ςτς+τ)≤2[ζ(4ςτw2ςτ+(ς+τ)w)+ζ(4ςτw3(ς+τ)w−2ςτ)], | (2.26) |
2ζ(4ςτw2ςτ+(ς+τ)w)≤ζ(2ςτwι(ς+τ)w+2(1−ι)ςτ)+ζ(2ςτw2ςτι+(1−ι)(ς+τ)w), | (2.27) |
2ζ(4ςτw3(ς+τ)w−2ςτ)≤ζ(2ςτw2ι(ςw+τw−ςτ)+(1−ι)(ς+τ)w)+ζ(2ςτw2(1−ι)(ςw+τw−ςτ)+ι(ς+τ)w), | (2.28) |
ζ(2ςτwι(ς+τ)w+2(1−ι)ςτ)+ζ(2ςτw2ςτι+(1−ι)(ς+τ)w)≤ζ(w)+ζ(2ςτς+τ) | (2.29) |
and
ζ(2ςτw2ι(ςw+τw−ςτ)+(1−ι)(ς+τ)w)+ζ(2ςτw2(1−ι)(ςw+τw−ςτ)+ι(ς+τ)w)≤ζ(2ςτς+τ)+ζ(ςτwς+τ−w). | (2.30) |
Multiplying the inequalities (2.26)–(2.30) by ϑ(w)w2 and integrating them over ι on [0,12], over w on [ς,2ςτς+τ] and using identities (2.22)–(2.25), we derive (2.19).
(ii) Since ζ:[ς,τ]→R is harmonic convex on [ς,τ], hence ˘h:[1τ,1ς]→R defined by ˘h(w)=ζ(1w) is convex on [1τ,1ς]. Thus, by integration by parts, we get that following identity holds:
∫ς+τ2ςτ1τ(ς+τ2ςτ−w)[˘h′(1ς+1τ−w)−˘h′(w)]dw=(τ−ς2ςτ)[˘h(1ς)+˘h(1τ)]−∫ς+τ2ςτ1τ[˘h(1ς+1τ−w)+˘h(w)]dw. | (2.31) |
The equality (2.31) is equivalent to the equality:
∫2ςτς+τς1w2(1w−ς+τ2ςτ)[ζ′(11ς+1τ−1w)(1ς+1τ−1w)2−w2ζ′(w)]dw=(τ−ςςτ)[ζ(ς)+ζ(τ)2]−∫τςζ(w)w2dw. | (2.32) |
Using substitution rules for integration and the hypothesis of ϑ, we have the following identities:
∫τςζ(w)ϑ(w)w2dw=∫2ςτς+τς[ζ(w)+ζ(11ς+1τ−1w)]ϑ(w)w2dw | (2.33) |
and
Sϑ(ι)=∫2ςτς+τς[ζ(2ςτw2ςτι+(1−ι)(ς+τ)w)+ζ(2ςτw2ι(ςw+τw−ςτ)+(1−ι)(ς+τ)w)]ϑ(w)w2dw. | (2.34) |
Now, using the convexity of ˘h(w)=ζ(1w) on [1τ,1ς] and the hypothesis of ϑ, the following inequality holds for all ι∈[0,1] and w∈[1τ,ς+τ2ςτ]:
[˘h(w)−˘h(ιw+(1−ι)(ς+τ2ςτ))]ϑ(1w)+[˘h(1ς+1τ−w)−˘h(ι(1ς+1τ−w)+(1−ι)(ς+τ2ςτ))]ϑ(1w)≤(1−ι)(w−ς+τ2ςτ)˘h′(w)ϑ(1w)+(1−ι)(ς+τ2ςτ−w)˘h′(1ς+1τ−w)ϑ(1w)=(1−ι)(ς+τ2ςτ−w)[˘h′(1ς+1τ−w)−˘h′(w)]ϑ(1w) | (2.35) |
which is equivalent to
[ζ(1w)−ζ(1ιw+(1−ι)(ς+τ2ςτ))]ϑ(1w)+[ζ(11ς+1τ−w)−ζ(1ι(1ς+1τ−w)+(1−ι)(ς+τ2ςτ))]ϑ(1w)≤(1−ι)(ς+τ2ςτ−w)[ζ′(1w)w2−ζ′(11ς+1τ−w)(1ς+1τ−w)2]ϑ(1w). | (2.36) |
Integrating the above inequalities over w on [1τ,ς+τ2ςτ], we get
∫ς+τ2ςτ1τ[ζ(1w)−ζ(1ιw+(1−ι)(ς+τ2ςτ))]ϑ(1w)dw+∫ς+τ2ςτ1τ[ζ(11ς+1τ−w)−ζ(1ι(1ς+1τ−w)+(1−ι)(ς+τ2ςτ))]ϑ(1w)dw≤(1−ι)∫ς+τ2ςτ1τ(ς+τ2ςτ−w)[ζ′(1w)w2−ζ′(11ς+1τ−w)(1ς+1τ−w)2]ϑ(1w)dw. | (2.37) |
After making use of suitable substitution, the inequality (2.37) takes the form:
∫2ςτς+τς1w2[ζ(1ι1w+(1−ι)(ς+τ2ςτ))−ζ(w)]ϑ(w)dw+∫2ςτς+τς1w2[ζ(1ι(1ς+1τ−1w)+(1−ι)(ς+τ2ςτ))−ζ(11ς+1τ−1w)]ϑ(w)dw≤‖ϑ‖∞(1−ι)∫2ςτς+τς1w2(1w−ς+τ2ςτ)[ζ′(11ς+1τ−1w)(1ς+1τ−1w)2−w2ζ′(w)]dw. | (2.38) |
Inequality (2.20) follows from (2.31)–(2.34) and (2.38).
(iii) We use the fact that ζ:[ς,τ]→R is harmonic convex on [ς,τ], hence ˘h:[1τ,1ς]→R defined by ˘h(w)=ζ(1w) is convex on [1τ,1ς]. Thus
˘h(1τ)−˘h(ς+τ2ςτ)2≤ς−τ4ςτ˘h′(1τ) |
and
˘h(1ς)−˘h(ς+τ2ςτ)2≤τ−ς4ςτ˘h′(1ς). |
Adding the above inequalities
˘h(1ς)+˘h(1τ)2−˘h(ς+τ2ςτ)≤(τ−ς)(˘h′(1ς)−˘h′(1τ))4ςτ. | (2.39) |
The inequality (2.39) becomes
ζ(ς)+ζ(τ)2−ζ(2ςτς+τ)≤(τ−ς)(τ2ζ′(τ)−ς2ζ′(ς))4ςτ. | (2.40) |
Multiplying (2.40) both sides by ϑ(w)w2 and integrating over [ς,τ], we get
ζ(ς)+ζ(τ)2∫τςϑ(w)w2dw−ζ(2ςτς+τ)∫τςϑ(w)w2dw≤(τ−ς)(τ2ζ′(τ)−ς2ζ′(ς))4ςτ∫τςϑ(w)w2dw. | (2.41) |
From (2.17) and (2.41) we get (2.21).
Corollary 1. Suppose that the assumption of Theorem 17 are satisfiedand ϑ(w)=ςττ−ς, w∈[ς,τ], then
(i) The inequalities
ζ(2ςτς+τ)≤2∫4ςτ3ς+τ4ςτς+3τζ(w)w2≤∫10S(ι)dι≤12[ζ(2ςτς+τ)+ςττ−ς∫τςζ(w)w2dw] | (2.42) |
holds.
(ii) The inequalities
0≤ςττ−ς∫τςζ(w)w2dw−S(ι)≤(1−ι)[ζ(ς)+ζ(τ)2−ςττ−ς∫τςζ(w)w2dw] | (2.43) |
hold for all ι∈[0,1].
(iii) The inequalities
0≤ζ(ς)+ζ(τ)2−S(ι)≤(τ−ς)(τ2ζ′(τ)−ς2ζ′(ς))4ςτ | (2.44) |
are valid for all ι∈[0,1].
In the following theorems, we discuss inequalities for the functions S, Sϑ, ˘G1, T and Tϑ as considered above:
Theorem 18. Let ζ, ϑ, ˘G1, Sϑ be defined as above. Then
(i) The inequality
Sϑ(ι)≤˘G1(ι)∫τςϑ(w)w2dw | (2.45) |
holds for all ι∈[0,1].
(ii) The inequalities
2∫4ςτ3ς+τ4ςτς+3τζ(w)ϑ(2ςτw4ςτ−(ς+τ)w)ϑ(w)w2dw≤12[ζ(4ςτ3ς+τ)+ζ(4ςτς+3τ)]∫τςϑ(w)w2dw≤τ−ςςτ∫10λ1(ι)ϑ(ςτ(1−ι)ς+ιτ)dι≤12[ζ(2ςτς+τ)+ζ(ς)+ζ(τ)2]∫τςϑ(w)w2dw | (2.46) |
hold.
(iii) If ζ is differentiable on [ς,τ] and ϑ isbounded on [ς,τ], then, forall ι∈[0,1], then
0≤Sϑ(ι)−ζ(2ςτς+τ)∫τςϑ(w)w2dw≤(τ−ςςτ)[˘G1(ι)−S(ι)]‖ϑ‖∞, | (2.47) |
where ‖ϑ‖∞=supw∈[ς,τ]ϑ(w).
Proof. (i) Using integration by substitution and the assumptions on ϑ, we have that the following identity holds on [0,1]:
˘G1(ι)∫τςϑ(w)w2dw=∫2ςτς+τς[ζ(2ςτ2ςι+(1−ι)(ς+τ))+ζ(2ςτ2τι+(1−ι)(ς+τ))]ϑ(w)w2dw. | (2.48) |
By Lemma 2, the following inequality holds for all w∈[ς,2ςτς+τ] with
w1=2ςτw2ςτι+(1−ι)(ς+τ)w,w2=2ςτw2ι(ςw+τw−ςτ)+(1−ι)(ς+τ)w,˘ϰ1=2ςτ2τι+(1−ι)(ς+τ)and˘ϰ2=2ςτ2ςι+(1−ι)(ς+τ): |
ζ(2ςτw2ςτι+(1−ι)(ς+τ)w)+ζ(2ςτw2ι(ςw+τw−ςτ)+(1−ι)(ς+τ)w)≤ζ(2ςτ2τι+(1−ι)(ς+τ))+ζ(2ςτ2ςι+(1−ι)(ς+τ)). | (2.49) |
Multiplying both sides of (2.49) with ϑ(w)w2, integrating over [ς,2ςτς+τ] and using (2.34) and (2.49), we obtain (2.45).
(ii) We can observe that
12[ζ(4ςτ3ς+τ)+ζ(4ςτς+3τ)]∫τςϑ(w)w2dw=[ζ(4ςτ3ς+τ)+ζ(4ςτς+3τ)]∫2ςτς+τςϑ(w)w2dw. | (2.50) |
By using harmonic symmetric assumption on ϑ, we get
2∫4ςτ3ς+τ4ςτς+3τζ(w)ϑ(2ςτw4ςτ−(ς+τ)w)ϑ(w)w2dw=∫2ςτς+τς[ζ(4ςτw2ςτ+(ς+τ)w)+ζ(4ςτw3(ς+τ)w−2ςτ)]ϑ(w)w2dw. | (2.51) |
We can also see that the following identity holds:
τ−ςςτ∫10˘G1(ι)ϑ(ςτ(1−ι)ς+ιτ)dι=τ−ςςτ×[∫112ζ(12ςι+(1−ι)(ς+τ))ϑ(ςτ(1−ι)ς+ιτ)dι+∫120ζ(12ςι+(1−ι)(ς+τ))ϑ(ςτ(1−ι)τ+ις)dι+∫120ζ(12τι+(1−ι)(ς+τ))ϑ(ςτ(1−ι)τ+ις)dι+∫112ζ(12τι+(1−ι)(ς+τ))ϑ(ςτ(1−ι)ς+ιτ)dι]=12∫2ςτς+τς[ζ(2wςς+w)+ζ(2ςτw2ςw+τw−ςτ)+ζ(2τwτ+w)+ζ(2ςτwςw+2τw−ςτ)]ϑ(w)w2dw. | (2.52) |
Finally we also have
12[ζ(2ςτς+τ)+ζ(ς)+ζ(τ)2]∫τςϑ(w)w2dw=[ζ(2ςτς+τ)+ζ(ς)+ζ(τ)2]∫2ςτς+τςϑ(w)w2dw. | (2.53) |
By Lemma 2, the following inequalities hold for all w∈[ς,2ςτς+τ]:
The inequality
ζ(4ςτw2ςτ+(ς+τ)w)+ζ(4ςτw3(ς+τ)w−2ςτ)≤ζ(4ςτ3ς+τ)+ζ(4ςτς+3τ) | (2.54) |
holds with the choices of w1=4ςτw2ςτ+(ς+τ)w, w2=4ςτw3(ς+τ)w−2ςτ, ˘ϰ1=4ςτ3ς+τ and ˘ϰ2=4ςτς+3τ.
The inequality
ζ(4ςτ3ς+τ)≤12[ζ(2ςτw2ςw+τw−ςτ)+ζ(2ςwς+w)] | (2.55) |
holds with the choices of w1=w2=4ςτ3ς+τ, ˘ϰ1=2ςwς+w, ˘ϰ2=2ςτw2ςw+τw−ςτ.
The inequality
ζ(4ςτς+3τ)≤12[ζ(2ςτwςw+2τw−ςτ)+ζ(2τwτ+w)] | (2.56) |
holds with the choices of w1=w2=4ςτς+3τ, ˘ϰ1=2τwτ+w, ˘ϰ2=2ςτwςw+2τw−ςτ.
The inequality
ζ(2ςτw2ςw+τw−ςτ)+ζ(2ςwς+w)≤ζ(ς)+ζ(2τςς+τ) | (2.57) |
holds with the choices of w1=2ςwς+w, w2=2ςτw2ςw+τw−ςτ, ˘ϰ1=ς, ˘ϰ2=2τςς+τ.
The inequality
ζ(2ςτwςw+2τw−ςτ)+ζ(2τwτ+w)≤ζ(2τςς+τ)+ζ(τ) | (2.58) |
holds with the choices of w1=2τwτ+w, w2=2ςτwςw+2τw−ςτ, ˘ϰ1=2τςς+τ, ˘ϰ2=τ.
Multiplying (2.54)–(2.58) by ϑ(w), integrating them over [ς,2ςτς+τ] and using (2.50)–(2.53), we get (2.46).
(iii) By integration by parts, we get
ι∫ς+τ2ςτ1τ[(w−ς+τ2ςτ)˘h′(ιw+(1−ι)(ς+τ2ςτ))+(ς+τ2ςτ−w)˘h′(ι(1ς+1τ−w)+(1−ι)(ς+τ2ςτ))]dw=ι∫1ς1τ(w−ς+τ2ςτ)˘h′(ιw+(1−ι)(ς+τ2ςτ))dw=τ−ς2ςτ[ζ(2ςτ2τι+(1−ι)(ς+τ))+ζ(2ςτ2ςι+(1−ι)(ς+τ))]−∫τς1w2ζ(2ςτw2ςτι+(1−ι)(ς+τ))dw=(τ−ςςτ)[˘G1(ι)−S(ι)]. | (2.59) |
Using the convexity of ˘h and the hypothesis of ϑ, the inequality holds for all ι∈[0,1] and w∈[1τ,ς+τ2ςτ]:
[˘h(ιw+(1−ι)(ς+τ2ςτ))−˘h(ς+τ2ςτ)]ϑ(1w)+[˘h(ι(1ς+1τ−w)+(1−ι)(ς+τ2ςτ))−˘h(ς+τ2ςτ)]ϑ(1w)≤ι(w−ς+τ2ςτ)˘h′(ιw+(1−ι)(ς+τ2ςτ))ϑ(1w)+ι(ς+τ2ςτ−w)˘h′(ι(1ς+1τ−w)+(1−ι)(ς+τ2ςτ))ϑ(1w)=ι(ς+τ2ςτ−w)[˘h′(ι(1ς+1τ−w)+(1−ι)(ς+τ2ςτ))−˘h′(ιw+(1−ι)(ς+τ2ςτ))]ϑ(1w)≤ι(ς+τ2ςτ−w)[˘h′(ι(1ς+1τ−w)+(1−ι)(ς+τ2ςτ))−˘h′(ιw+(1−ι)(ς+τ2ςτ))]‖ϑ‖∞. | (2.60) |
Integrating (2.60), using (2.59) and (2.17), we get (2.47).
Corollary 2. According to the assumptions of Theorem 18 with ϑ(w)=ςττ−ς, w∈[ς,τ], then
(i) The inequality
S(ι)≤˘G1(ι) |
holds for all ι∈[0,1].
(ii) The inequalities
2ςττ−ς∫4ςτ3ς+τ4ςτς+3τζ(w)ϑ(2ςτw4ςτ−(ς+τ)w)dww2≤12[ζ(4ςτ3ς+τ)+ζ(4ςτς+3τ)]≤τ−ςςτ∫10˘G1(ι)×ϑ(ςτ(1−ι)ς+ιτ)dι≤12[ζ(2ςτς+τ)+ζ(ς)+ζ(τ)2] | (2.61) |
hold.
(iii) The inequality
0≤S(ι)−ζ(2ςτς+τ)dw≤(τ−ςςτ)[˘G1(ι)−S(ι)] | (2.62) |
holds for all ι∈[0,1].
Theorem 19. Let ζ, ϑ, ˘G1, Sϑ, Tϑ bedefined as above. Then
(i) Tϑ is harmonic convex on (0,1].
(ii) The inequalities
˘G1(ι)∫τςϑ(w)w2dw≤Tϑ(ι)≤(1−ι)∫τςζ(w)ϑ(w)w2dw+ι⋅ζ(ς)+ζ(τ)2∫τςϑ(w)w2dw≤ζ(ς)+ζ(τ)2∫τςϑ(w)w2dw, | (2.63) |
Sϑ(1−ι)≤Tϑ(ι) | (2.64) |
and
Sϑ(ι)+Sϑ(1−ι)2≤Tϑ(ι) | (2.65) |
hold for all ι∈[0,1].
(iii) The following bound is true:
supι∈[0,1]Tϑ(ι)=ζ(ς)+ζ(τ)2∫τςϑ(w)w2dw. | (2.66) |
Proof. (i) Since ζ is harmonic convex and ϑ is nonnegative, we see that Tϑ is harmonic convex on (0,1].
(ii) We observe that the following identity holds on [0,1]:
Tϑ(ι)=12∫2ςτς+τς[ζ(τwιw+(1−ι)τ)+ζ(ςτwςwι+(1−ι)(ςw+τw−ςτ))+ζ(ςwιw+(1−ι)ς)+ζ(ςτwτwι+(1−ι)(ςw+τw−ςτ))]ϑ(w)dw. | (2.67) |
By Lemma 2, the following inequalities hold for all w∈[ς,2ςτς+τ]:
2ζ(2ςτ2ςι+(1−ι)(ς+τ))≤ζ(τwιw+(1−ι)τ)+ζ(ςτwςwι+(1−ι)(ςw+τw−ςτ)) | (2.68) |
with
w1=w2=2ςτ2ςι+(1−ι)(ς+τ),˘ϰ1=τwιw+(1−ι)τand˘ϰ2=ςτwςwι+(1−ι)(ςw+τw−ςτ). |
2ζ(2ςτ2τι+(1−ι)(ς+τ))≤ζ(ςwιw+(1−ι)ς)+ζ(ςτwτwι+(1−ι)(ςw+τw−ςτ)) | (2.69) |
with
w1=w2=2ςτ2τι+(1−ι)(ς+τ),˘ϰ1=ςwιw+(1−ι)ςand˘ϰ2=ςτwτwι+(1−ι)(ςw+τw−ςτ). |
Multiplying the inequalities (2.68) and (2.69) by ϑ(w), integrating them over w on [ς,2ςτς+τ] and using identities (2.48) and (2.67), we derive the first inequality of (2.63). Using the harmonic convexity of ζ and the inequality (2.17), the last part of (2.63) holds. Using again the harmonic convexity of ζ, we get
Sϑ(1−ι)=τ∫ςζ(2ςτw2ςτ(1−ι)+ι(ς+τ)w)ϑ(w)w2dw=τ∫ςζ(112(ιw+(1−ι)ςςw)+12(ιw+(1−ι)ττw))ϑ(w)w2dw≤12τ∫ς[ζ(ςwιw+(1−ι)ς)+ζ(ςwιw+(1−ι)ς)]ϑ(w)w2dw=Tϑ(ι). | (2.70) |
From (2.45), (2.63) and 2.70), we get (2.65).
(iii) (2.66) holds due to the inequality (2.63).
The subject of mathematical inequalities using convex functions has been seen to be an emerging topic during the past more than three decades. The researchers are trying to find new generalizations of convex functions and as a result new results are being adding to the theory of inequalities. In the current research we have used harmonic convex functions to generalize a number of results that hold for convex functions. In order to get the novel results in this study, we defined some new mappings over the interval [0,1]. We have discussed some interesting properties of these mappings and obtained new refinements of the Hermite-hadamard and Fejér type inequalities already proven for harmonic convex functions. We believe that the results of this paper could be a source of inspiration for mathematicians working in this field and young researchers thinking to start their career in this fascinating field of mathematics.
The author is very thankful to all the anonymous referees for their very useful and constructive comments in order to present the paper in the present form. This work is supported by the Deanship of Scientific Research, King Faisal University under the Nasher Track 2021 (Research Project Number NA000177) which has been converted to Ambitious Researcher Track (Research Project Number GRANT931).
The authors declare that there are no conflicts of interest regarding the publication of this article.
[1] |
H. Srivastava, R. Shah, H. Khan, M. Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Method. Appl. Sci., 43 (2020), 199–212. http://dx.doi.org/10.1002/mma.5846 doi: 10.1002/mma.5846
![]() |
[2] |
A. Alshehry, M. Imran, A. Khan, R. Shah, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular kernel operators, Symmetry, 14 (2022), 1463. http://dx.doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463
![]() |
[3] |
H. Yasmin, N. Aljahdaly, A. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled konno-onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. http://dx.doi.org/10.3390/math11122686 doi: 10.3390/math11122686
![]() |
[4] |
S. El-Tantawy, H. Alyousef, R. Matoog, R. Shah, On the optical soliton solutions to the fractional complex structured (1+1)-dimensional perturbed gerdjikov-ivanov equation, Phys. Scr., 99 (2024), 035249. http://dx.doi.org/10.1088/1402-4896/ad241b doi: 10.1088/1402-4896/ad241b
![]() |
[5] |
S. El-Tantawy, R. Matoog, A. Alrowaily, S. Ismaeel, On the shock wave approximation to fractional generalized Burger-Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105. http://dx.doi.org/10.1063/5.0187127 doi: 10.1063/5.0187127
![]() |
[6] |
J. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. http://dx.doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
![]() |
[7] |
J. Liu, F. Geng, An explanation on four new definitions of fractional operators, Acta Math. Sci., 44 (2024), 1271–1279. http://dx.doi.org/10.1007/s10473-024-0405-7 doi: 10.1007/s10473-024-0405-7
![]() |
[8] |
A. Majeed, M. Kamran, M. Iqbal, D. Baleanu, Solving time fractional Burgers and Fishers equations using cubic B-spline approximation method, Adv. Differ. Equ., 2020 (2020), 175. http://dx.doi.org/10.1186/s13662-020-02619-8 doi: 10.1186/s13662-020-02619-8
![]() |
[9] |
D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. http://dx.doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
![]() |
[10] |
M. Hajad, V. Tangwarodomnukun, C. Jaturanonda, C. Dumkum, Laser cutting path optimization using simulated annealing with an adaptive large neighborhood search, Int. J. Adv. Manuf. Technol., 103 (2019), 781–792. http://dx.doi.org/10.1007/s00170-019-03569-6 doi: 10.1007/s00170-019-03569-6
![]() |
[11] |
R. El-Nabulsi, The fractional Boltzmann transport equation, Comput. Math. Appl., 62 (2011), 1568–1575. http://dx.doi.org/10.1016/j.camwa.2011.03.040 doi: 10.1016/j.camwa.2011.03.040
![]() |
[12] |
A. Khan, J. Iqbal, R. Shah, A new efficient two-step iterative method for solving absolute value equations, Eng. Computation., 41 (2024), 597–610. http://dx.doi.org/10.1108/EC-11-2023-0781 doi: 10.1108/EC-11-2023-0781
![]() |
[13] |
A. Atangana, J. Gomez-Aguilar, Numerical approximation of Riemann Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Part. D. E., 34 (2018), 1502–1523. http://dx.doi.org/10.1002/num.22195 doi: 10.1002/num.22195
![]() |
[14] |
D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. http://dx.doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0
![]() |
[15] |
H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. http://dx.doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
![]() |
[16] |
L. He, A. Valocchi, C. Duarte, A transient global-local generalized FEM for parabolic and hyperbolic PDEs with multi-space/time scales, J. Comput. Phys., 488 (2023), 112179. http://dx.doi.org/10.1016/j.jcp.2023.112179 doi: 10.1016/j.jcp.2023.112179
![]() |
[17] |
L. He, A. Valocchi, C. Duarte, An adaptive global-local generalized FEM for multiscale advection-diffusion problems, Comput. Method. Appl. M., 418 (2024), 116548. http://dx.doi.org/10.1016/j.cma.2023.116548 doi: 10.1016/j.cma.2023.116548
![]() |
[18] | Y. Kai, S. Chen, K. Zhang, Z. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Waves Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2044541 |
[19] |
Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. http://dx.doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
![]() |
[20] |
W. Liu, X. Bai, H. Yang, R. Bao, J. Liu, Tendon driven bistable origami flexible gripper for high-speed adaptive grasping, IEEE Robot. Autom. Let., 9 (2024), 5417–5424. http://dx.doi.org/10.1109/LRA.2024.3389413 doi: 10.1109/LRA.2024.3389413
![]() |
[21] |
B. Cuahutenango-Barro, M. Taneco-Hernandez, J. Gomez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos Soliton. Fract., 115 (2018), 283–299. http://dx.doi.org/10.1016/j.chaos.2018.09.002 doi: 10.1016/j.chaos.2018.09.002
![]() |
[22] |
J. Gomez-Gardenes, V. Latora, Entropy rate of diffusion processes on complex networks, Phys. Rev. E, 78 (2008), 065102. http://dx.doi.org/10.1103/PhysRevE.78.065102 doi: 10.1103/PhysRevE.78.065102
![]() |
[23] |
A. Lopes, J. Tenreiro Machado, Entropy analysis of soccer dynamics, Entropy, 21 (2019), 187. http://dx.doi.org/10.3390/e21020187 doi: 10.3390/e21020187
![]() |
[24] |
A. Bejan, Second-law analysis in heat transfer and thermal design, Advances in Heat Transfer, 15 (1982), 1–58. http://dx.doi.org/10.1016/S0065-2717(08)70172-2 doi: 10.1016/S0065-2717(08)70172-2
![]() |
[25] |
M. Syam, M. Al-Refai, Solving fractional diffusion equation via the collocation method based on fractional Legendre functions, Journal of Computational Methods in Physics, 2014 (2014), 381074. http://dx.doi.org/10.1155/2014/381074 doi: 10.1155/2014/381074
![]() |
[26] |
E. Lenzi, M. Dos Santos, F. Michels, R. Mendes, L. Evangelista, Solutions of some nonlinear diffusion equations and generalized entropy framework, Entropy, 15 (2013), 3931–3940. http://dx.doi.org/10.3390/e15093931 doi: 10.3390/e15093931
![]() |
[27] |
J. Prehl, F. Boldt, K. Hoffmann, C. Essex, Symmetric fractional diffusion and entropy production, Entropy, 18 (2016), 275. http://dx.doi.org/10.3390/e18070275 doi: 10.3390/e18070275
![]() |
[28] |
M. Dehghan, M. Abbaszadeh, A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation, Comput. Math. Appl., 75 (2018), 2903–2914. http://dx.doi.org/10.1016/j.camwa.2018.01.020 doi: 10.1016/j.camwa.2018.01.020
![]() |
[29] |
S. Lei, Y. Huang, Fast algorithms for high-order numerical methods for space-fractional diffusion equations, Int. J. Comput. Math., 94 (2017), 1062–1078. http://dx.doi.org/10.1080/00207160.2016.1149579 doi: 10.1080/00207160.2016.1149579
![]() |
[30] |
N. Tripathi, S. Das, S. Ong, H. Jafari, M. Al Qurashi, Solution of higher order nonlinear time-fractional reaction diffusion equation, Entropy, 18 (2016), 329. http://dx.doi.org/10.3390/e18090329 doi: 10.3390/e18090329
![]() |
[31] |
D. Kumar, J. Singh, S. Kumar, Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method, Journal of the Association of Arab Universities for Basic and Applied Sciences, 17 (2015), 20–26. http://dx.doi.org/10.1016/j.jaubas.2014.02.002 doi: 10.1016/j.jaubas.2014.02.002
![]() |
[32] |
F. Zafarghandi, M. Mohammadi, E. Babolian, S. Javadi, Radial basis functions method for solving the fractional diffusion equations, Appl. Math. Comput., 342 (2019), 224–246. http://dx.doi.org/10.1016/j.amc.2018.08.043 doi: 10.1016/j.amc.2018.08.043
![]() |
[33] |
A. Bejan, Second law analysis in heat transfer, Energy, 5 (1980), 720–732. http://dx.doi.org/10.1016/0360-5442(80)90091-2 doi: 10.1016/0360-5442(80)90091-2
![]() |
[34] |
S. Sarwar, S. Alkhalaf, S. Iqbal, M. Zahid, A note on optimal homotopy asymptotic method for the solutions of fractional order heat-and wave-like partial differential equations, Comput. Math. Appl., 70 (2015), 942–953. http://dx.doi.org/10.1016/j.camwa.2015.06.017 doi: 10.1016/j.camwa.2015.06.017
![]() |
[35] |
A. Bokhari, G. Mohammad, M. Mustafa, F. Zaman, Adomian decomposition method for a nonlinear heat equation with temperature dependent thermal properties, Math. Probl. Eng., 2009 (2009), 926086. http://dx.doi.org/10.1155/2009/926086 doi: 10.1155/2009/926086
![]() |
[36] |
D. Shou, J. He, Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients, Phys. Lett. A, 372 (2008), 233–237. http://dx.doi.org/10.1016/j.physleta.2007.07.011 doi: 10.1016/j.physleta.2007.07.011
![]() |
[37] |
D. Rostamy, K. Karimi, Bernstein polynomials for solving fractional heat- and wave-like equations, FCAA, 15 (2012), 556–571. http://dx.doi.org/10.2478/s13540-012-0039-7 doi: 10.2478/s13540-012-0039-7
![]() |
[38] |
C. Liu, S. Kong, S. Yuan, Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem, Therm. Sci., 17 (2013), 715–721. http://dx.doi.org/10.2298/TSCI120826075L doi: 10.2298/TSCI120826075L
![]() |
[39] | R. Nuruddeen, A. Nass, Exact solutions of wave-type equations by the Aboodh decomposition method, Stochastic Modelling and Applications, 21 (2017), 23–30. |
[40] |
R. Mittal, P. Singhal, Numerical solution of Burger's equation, Commun. Numer. Meth. Eng., 9 (1993), 397–406. http://dx.doi.org/10.1002/cnm.1640090505 doi: 10.1002/cnm.1640090505
![]() |
[41] |
A. Esen, O. Tasbozan, Numerical solution of time fractional Burgers equation by cubic B-spline finite elements, Mediterr. J. Math., 13 (2016), 1325–1337. http://dx.doi.org/10.1007/s00009-015-0555-x doi: 10.1007/s00009-015-0555-x
![]() |
[42] |
A. Esen, N. Yagmurlu, O. Tasbozan, Approximate analytical solution to time-fractional damped Burger and Cahn-Allen equations, Appl. Math. Inf. Sci., 7 (2013), 1951–1956. http://dx.doi.org/10.12785/amis/070533 doi: 10.12785/amis/070533
![]() |
[43] |
E. Abdel-Salam, E. Yousif, Y. Arko, E. Gumma, Solution of moving boundary space-time fractional Burger's equation, J. Appl. Math., 2014 (2014), 218092. http://dx.doi.org/10.1155/2014/218092 doi: 10.1155/2014/218092
![]() |
[44] |
M. Inc, The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. http://dx.doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
![]() |
[45] |
O. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. http://dx.doi.org/10.5373/jaram.1447.051912 doi: 10.5373/jaram.1447.051912
![]() |
[46] |
O. Arqub, Z. Abo-Hammour, R. Al-Badarneh, S. Momani, A reliable analytical method for solving higher-order initial value problems, Discrete Dyn. Nat. Soc., 2013 (2013), 673829. http://dx.doi.org/10.1155/2013/673829 doi: 10.1155/2013/673829
![]() |
[47] |
O. Arqub, A. El-Ajou, Z. Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique, Entropy, 16 (2014), 471–493. http://dx.doi.org/10.3390/e16010471 doi: 10.3390/e16010471
![]() |
[48] |
A. El-Ajou, O. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. http://dx.doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
![]() |
[49] |
F. Xu, Y. Gao, X. Yang, H. Zhang, Construction of fractional power series solutions to fractional Boussinesq equations using residual power series method, Math. Probl. Eng., 2016 (2016), 5492535. http://dx.doi.org/10.1155/2016/5492535 doi: 10.1155/2016/5492535
![]() |
[50] |
J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 6159024. http://dx.doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
![]() |
[51] |
I. Jaradat, M. Alquran, R. Abdel-Muhsen, An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers' models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93 (2018), 1911–1922. http://dx.doi.org/10.1007/s11071-018-4297-8 doi: 10.1007/s11071-018-4297-8
![]() |
[52] |
I. Jaradat, M. Alquran, K. Al-Khaled, An analytical study of physical models with inherited temporal and spatial memory, Eur. Phys. J. Plus, 133 (2018), 162. http://dx.doi.org/10.1140/epjp/i2018-12007-1 doi: 10.1140/epjp/i2018-12007-1
![]() |
[53] |
M. Liaqat, A. Khan, M. Alam, M. Pandit, S. Etemad, S. Rezapour, Approximate and closed-form solutions of Newell-Whitehead-Segel equations via modified conformable Shehu transform decomposition method, Math. Probl. Eng., 2022 (2022), 6752455. http://dx.doi.org/10.1155/2022/6752455 doi: 10.1155/2022/6752455
![]() |
[54] |
M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. http://dx.doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667
![]() |
[55] |
T. Eriqat, A. El-Ajou, M. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Soliton. Fract., 138 (2020), 109957. http://dx.doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
![]() |
[56] |
M. Alquran, M. Alsukhour, M. Ali, I. Jaradat, Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems, Nonlinear Engineering, 10 (2021), 282–292. http://dx.doi.org/10.1515/nleng-2021-0022 doi: 10.1515/nleng-2021-0022
![]() |
[57] | A. Khan, M. Junaid, I. Khan, F. Ali, K. Shah, D. Khan, Application of homotopy analysis natural transform method to the solution of nonlinear partial differential equations, Sci. Int. (Lahore), 29 (2017), 297–303. |
[58] |
M. Zhang, Y. Liu, X. Zhou, Efficient homotopy perturbation method for fractional non-linear equations using Sumudu transform, Therm. Sci., 19 (2015), 1167–1171. http://dx.doi.org/10.2298/TSCI1504167Z doi: 10.2298/TSCI1504167Z
![]() |
[59] |
G. Ojo, N. Mahmudov, Aboodh transform iterative method for spatial diffusion of a biological population with fractional-order, Mathematics, 9 (2021), 155. http://dx.doi.org/10.3390/math9020155 doi: 10.3390/math9020155
![]() |
[60] |
M. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler Kernel, Symmetry, 13 (2021), 2055. http://dx.doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055
![]() |
[61] |
A. Ganie, S. Noor, M. Al Huwayz, A. Shafee, S. El-Tantawy, Numerical simulations for fractional Hirota-Satsuma coupled Korteweg-de Vries systems, Open Phys., 22 (2024), 20240008. http://dx.doi.org/10.1515/phys-2024-0008 doi: 10.1515/phys-2024-0008
![]() |
[62] |
S. Noor, W. Albalawi, R. Shah, M. Al-Sawalha, S. Ismaeel, S. El-Tantawy, On the approximations to fractional nonlinear damped Burgers-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. http://dx.doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
![]() |
[63] |
S. Noor, W. Albalawi, R. Shah, A. Shafee, S. Ismaeel, S. El-Tantawy, A comparative analytical investigation for some linear and nonlinear time-fractional partial differential equations in the framework of the Aboodh transformation, Front. Phys., 12 (2024), 1374049. http://dx.doi.org/10.3389/fphy.2024.1374049 doi: 10.3389/fphy.2024.1374049
![]() |
[64] | K. Aboodh, The new integral transform "Aboodh transform", Global Journal of Pure and Applied Mathematics, 9 (2013), 35–43. |
[65] | S. Aggarwal, R. Chauhan, A comparative study of Mohand and Aboodh transforms, International Journal of Research in Advent Technology, 7 (2019), 520–529. |
[66] |
M. Benattia, K. Belghaba, Application of the Aboodh transform for solving fractional delay differential equations, Universal Journal of Mathematics and Applications, 3 (2020), 93–101. http://dx.doi.org/10.32323/ujma.702033 doi: 10.32323/ujma.702033
![]() |
[67] |
B. Delgado, J. Macias-Diaz, On the general solutions of some non-homogeneous div-curl systems with Riemann-Liouville and Caputo fractional derivatives, Fractal Fract., 5 (2021), 117. http://dx.doi.org/10.3390/fractalfract5030117 doi: 10.3390/fractalfract5030117
![]() |
[68] |
S. Alshammari, M. Al-Smadi, I. Hashim, M. Alias, Residual power series technique for simulating fractional Bagley-Torvik problems emerging in applied physics, Appl. Sci., 9 (2019), 5029. http://dx.doi.org/10.3390/app9235029 doi: 10.3390/app9235029
![]() |
[69] |
W. Albalawi, S. El-Tantawy, S. Alkhateeb, The phase shift analysis of the colliding dissipative KdV solitons, J. Ocean Eng. Sci., 7 (2022), 521–527. http://dx.doi.org/10.1016/j.joes.2021.09.021 doi: 10.1016/j.joes.2021.09.021
![]() |
[70] |
B. Kashkari, S. El-Tantawy, A. Salas, L. El-Sherif, Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma, Chaos Soliton. Fract., 130 (2020), 109457. http://dx.doi.org/10.1016/j.chaos.2019.109457 doi: 10.1016/j.chaos.2019.109457
![]() |
[71] |
H. Alyousef, A. Salas, R. Matoog, S. El-Tantawy, On the analytical and numerical approximations to the forced damped Gardner Kawahara equation and modeling the nonlinear structures in a collisional plasma, Phys. Fluids, 34 (2022), 103105. http://dx.doi.org/10.1063/5.0109427 doi: 10.1063/5.0109427
![]() |
[72] |
S. El-Tantawy, A. Salas, H. Alyouse, M. Alharthi, Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma, Chinese J. Phys., 77 (2022), 2454–2471. http://dx.doi.org/10.1016/j.cjph.2022.04.009 doi: 10.1016/j.cjph.2022.04.009
![]() |
[73] |
A. Wazwaz, W. Alhejaili, S. El-Tantawy, Physical multiple shock solutions to the integrability of linear structures of Burgers hierarchy, Phys. Fluids, 35 (2023), 123101. http://dx.doi.org/10.1063/5.0177366 doi: 10.1063/5.0177366
![]() |
[74] |
S. El-Tantawy, A. Salas, H. Alyousef, M. Alharthi, Novel approximations to a nonplanar nonlinear Schrodinger equation and modeling nonplanar rogue waves/breathers in a complex plasma, Chaos Soliton. Fract., 163 (2022), 112612. http://dx.doi.org/10.1016/j.chaos.2022.112612 doi: 10.1016/j.chaos.2022.112612
![]() |
[75] |
W. Alhejaili, B. Mouhammadoul, Alim, C. Tiofack, A. Mohamadou, S. El-Tantawy, Modulational instability and associated breathers in collisional electronegative non-Maxwellian plasmas, Phys. Fluids, 35 (2023), 103101. http://dx.doi.org/10.1063/5.0166059 doi: 10.1063/5.0166059
![]() |
1. | Khudhayr A. Rashedi, Musawa Yahya Almusawa, Hassan Almusawa, Tariq S. Alshammari, Adel Almarashi, Lump-type kink wave phenomena of the space-time fractional phi-four equation, 2024, 9, 2473-6988, 34372, 10.3934/math.20241637 | |
2. | Yousef Jawarneh, Humaira Yasmin, Ali M. Mahnashi, A new solitary wave solution of the fractional phenomena Bogoyavlenskii equation via Bäcklund transformation, 2024, 9, 2473-6988, 35308, 10.3934/math.20241678 |