Within the framework of time fractional calculus using the Caputo operator, the Aboodh residual power series method and the Aboodh transform iterative method were implemented to analyze three basic equations in mathematical physics: the heat equation, the diffusion equation, and Burger's equation. We investigated the analytical solutions of these equations using Aboodh techniques, which provide practical and precise methods for solving fractional differential equations. We clarified the behavior and properties of the obtained approximations using the suggested methods through exact mathematical derivations and computational analysis. The obtained approximations were analyzed numerically and graphically to verify their high accuracy and stability against different related parameters. Additionally, we examined the impact of varying the fractional parameter the profiles of all derived approximations. Our results confirm these methods, efficacy in capturing the complicated dynamics of fractional systems. Therefore, they enhance the comprehension and examination of time-fractional equations in many scientific and technical contexts and in modeling different physical problems related to fluid mediums and plasma physics.
Citation: Humaira Yasmin, Aljawhara H. Almuqrin. Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies[J]. AIMS Mathematics, 2024, 9(6): 16721-16752. doi: 10.3934/math.2024811
Within the framework of time fractional calculus using the Caputo operator, the Aboodh residual power series method and the Aboodh transform iterative method were implemented to analyze three basic equations in mathematical physics: the heat equation, the diffusion equation, and Burger's equation. We investigated the analytical solutions of these equations using Aboodh techniques, which provide practical and precise methods for solving fractional differential equations. We clarified the behavior and properties of the obtained approximations using the suggested methods through exact mathematical derivations and computational analysis. The obtained approximations were analyzed numerically and graphically to verify their high accuracy and stability against different related parameters. Additionally, we examined the impact of varying the fractional parameter the profiles of all derived approximations. Our results confirm these methods, efficacy in capturing the complicated dynamics of fractional systems. Therefore, they enhance the comprehension and examination of time-fractional equations in many scientific and technical contexts and in modeling different physical problems related to fluid mediums and plasma physics.
[1] | H. Srivastava, R. Shah, H. Khan, M. Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Method. Appl. Sci., 43 (2020), 199–212. http://dx.doi.org/10.1002/mma.5846 doi: 10.1002/mma.5846 |
[2] | A. Alshehry, M. Imran, A. Khan, R. Shah, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular kernel operators, Symmetry, 14 (2022), 1463. http://dx.doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463 |
[3] | H. Yasmin, N. Aljahdaly, A. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled konno-onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. http://dx.doi.org/10.3390/math11122686 doi: 10.3390/math11122686 |
[4] | S. El-Tantawy, H. Alyousef, R. Matoog, R. Shah, On the optical soliton solutions to the fractional complex structured (1+1)-dimensional perturbed gerdjikov-ivanov equation, Phys. Scr., 99 (2024), 035249. http://dx.doi.org/10.1088/1402-4896/ad241b doi: 10.1088/1402-4896/ad241b |
[5] | S. El-Tantawy, R. Matoog, A. Alrowaily, S. Ismaeel, On the shock wave approximation to fractional generalized Burger-Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105. http://dx.doi.org/10.1063/5.0187127 doi: 10.1063/5.0187127 |
[6] | J. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. http://dx.doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027 |
[7] | J. Liu, F. Geng, An explanation on four new definitions of fractional operators, Acta Math. Sci., 44 (2024), 1271–1279. http://dx.doi.org/10.1007/s10473-024-0405-7 doi: 10.1007/s10473-024-0405-7 |
[8] | A. Majeed, M. Kamran, M. Iqbal, D. Baleanu, Solving time fractional Burgers and Fishers equations using cubic B-spline approximation method, Adv. Differ. Equ., 2020 (2020), 175. http://dx.doi.org/10.1186/s13662-020-02619-8 doi: 10.1186/s13662-020-02619-8 |
[9] | D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. http://dx.doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0 |
[10] | M. Hajad, V. Tangwarodomnukun, C. Jaturanonda, C. Dumkum, Laser cutting path optimization using simulated annealing with an adaptive large neighborhood search, Int. J. Adv. Manuf. Technol., 103 (2019), 781–792. http://dx.doi.org/10.1007/s00170-019-03569-6 doi: 10.1007/s00170-019-03569-6 |
[11] | R. El-Nabulsi, The fractional Boltzmann transport equation, Comput. Math. Appl., 62 (2011), 1568–1575. http://dx.doi.org/10.1016/j.camwa.2011.03.040 doi: 10.1016/j.camwa.2011.03.040 |
[12] | A. Khan, J. Iqbal, R. Shah, A new efficient two-step iterative method for solving absolute value equations, Eng. Computation., 41 (2024), 597–610. http://dx.doi.org/10.1108/EC-11-2023-0781 doi: 10.1108/EC-11-2023-0781 |
[13] | A. Atangana, J. Gomez-Aguilar, Numerical approximation of Riemann Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Part. D. E., 34 (2018), 1502–1523. http://dx.doi.org/10.1002/num.22195 doi: 10.1002/num.22195 |
[14] | D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. http://dx.doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0 |
[15] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. http://dx.doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[16] | L. He, A. Valocchi, C. Duarte, A transient global-local generalized FEM for parabolic and hyperbolic PDEs with multi-space/time scales, J. Comput. Phys., 488 (2023), 112179. http://dx.doi.org/10.1016/j.jcp.2023.112179 doi: 10.1016/j.jcp.2023.112179 |
[17] | L. He, A. Valocchi, C. Duarte, An adaptive global-local generalized FEM for multiscale advection-diffusion problems, Comput. Method. Appl. M., 418 (2024), 116548. http://dx.doi.org/10.1016/j.cma.2023.116548 doi: 10.1016/j.cma.2023.116548 |
[18] | Y. Kai, S. Chen, K. Zhang, Z. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Waves Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2044541 |
[19] | Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. http://dx.doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6 |
[20] | W. Liu, X. Bai, H. Yang, R. Bao, J. Liu, Tendon driven bistable origami flexible gripper for high-speed adaptive grasping, IEEE Robot. Autom. Let., 9 (2024), 5417–5424. http://dx.doi.org/10.1109/LRA.2024.3389413 doi: 10.1109/LRA.2024.3389413 |
[21] | B. Cuahutenango-Barro, M. Taneco-Hernandez, J. Gomez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos Soliton. Fract., 115 (2018), 283–299. http://dx.doi.org/10.1016/j.chaos.2018.09.002 doi: 10.1016/j.chaos.2018.09.002 |
[22] | J. Gomez-Gardenes, V. Latora, Entropy rate of diffusion processes on complex networks, Phys. Rev. E, 78 (2008), 065102. http://dx.doi.org/10.1103/PhysRevE.78.065102 doi: 10.1103/PhysRevE.78.065102 |
[23] | A. Lopes, J. Tenreiro Machado, Entropy analysis of soccer dynamics, Entropy, 21 (2019), 187. http://dx.doi.org/10.3390/e21020187 doi: 10.3390/e21020187 |
[24] | A. Bejan, Second-law analysis in heat transfer and thermal design, Advances in Heat Transfer, 15 (1982), 1–58. http://dx.doi.org/10.1016/S0065-2717(08)70172-2 doi: 10.1016/S0065-2717(08)70172-2 |
[25] | M. Syam, M. Al-Refai, Solving fractional diffusion equation via the collocation method based on fractional Legendre functions, Journal of Computational Methods in Physics, 2014 (2014), 381074. http://dx.doi.org/10.1155/2014/381074 doi: 10.1155/2014/381074 |
[26] | E. Lenzi, M. Dos Santos, F. Michels, R. Mendes, L. Evangelista, Solutions of some nonlinear diffusion equations and generalized entropy framework, Entropy, 15 (2013), 3931–3940. http://dx.doi.org/10.3390/e15093931 doi: 10.3390/e15093931 |
[27] | J. Prehl, F. Boldt, K. Hoffmann, C. Essex, Symmetric fractional diffusion and entropy production, Entropy, 18 (2016), 275. http://dx.doi.org/10.3390/e18070275 doi: 10.3390/e18070275 |
[28] | M. Dehghan, M. Abbaszadeh, A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation, Comput. Math. Appl., 75 (2018), 2903–2914. http://dx.doi.org/10.1016/j.camwa.2018.01.020 doi: 10.1016/j.camwa.2018.01.020 |
[29] | S. Lei, Y. Huang, Fast algorithms for high-order numerical methods for space-fractional diffusion equations, Int. J. Comput. Math., 94 (2017), 1062–1078. http://dx.doi.org/10.1080/00207160.2016.1149579 doi: 10.1080/00207160.2016.1149579 |
[30] | N. Tripathi, S. Das, S. Ong, H. Jafari, M. Al Qurashi, Solution of higher order nonlinear time-fractional reaction diffusion equation, Entropy, 18 (2016), 329. http://dx.doi.org/10.3390/e18090329 doi: 10.3390/e18090329 |
[31] | D. Kumar, J. Singh, S. Kumar, Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method, Journal of the Association of Arab Universities for Basic and Applied Sciences, 17 (2015), 20–26. http://dx.doi.org/10.1016/j.jaubas.2014.02.002 doi: 10.1016/j.jaubas.2014.02.002 |
[32] | F. Zafarghandi, M. Mohammadi, E. Babolian, S. Javadi, Radial basis functions method for solving the fractional diffusion equations, Appl. Math. Comput., 342 (2019), 224–246. http://dx.doi.org/10.1016/j.amc.2018.08.043 doi: 10.1016/j.amc.2018.08.043 |
[33] | A. Bejan, Second law analysis in heat transfer, Energy, 5 (1980), 720–732. http://dx.doi.org/10.1016/0360-5442(80)90091-2 doi: 10.1016/0360-5442(80)90091-2 |
[34] | S. Sarwar, S. Alkhalaf, S. Iqbal, M. Zahid, A note on optimal homotopy asymptotic method for the solutions of fractional order heat-and wave-like partial differential equations, Comput. Math. Appl., 70 (2015), 942–953. http://dx.doi.org/10.1016/j.camwa.2015.06.017 doi: 10.1016/j.camwa.2015.06.017 |
[35] | A. Bokhari, G. Mohammad, M. Mustafa, F. Zaman, Adomian decomposition method for a nonlinear heat equation with temperature dependent thermal properties, Math. Probl. Eng., 2009 (2009), 926086. http://dx.doi.org/10.1155/2009/926086 doi: 10.1155/2009/926086 |
[36] | D. Shou, J. He, Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients, Phys. Lett. A, 372 (2008), 233–237. http://dx.doi.org/10.1016/j.physleta.2007.07.011 doi: 10.1016/j.physleta.2007.07.011 |
[37] | D. Rostamy, K. Karimi, Bernstein polynomials for solving fractional heat- and wave-like equations, FCAA, 15 (2012), 556–571. http://dx.doi.org/10.2478/s13540-012-0039-7 doi: 10.2478/s13540-012-0039-7 |
[38] | C. Liu, S. Kong, S. Yuan, Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem, Therm. Sci., 17 (2013), 715–721. http://dx.doi.org/10.2298/TSCI120826075L doi: 10.2298/TSCI120826075L |
[39] | R. Nuruddeen, A. Nass, Exact solutions of wave-type equations by the Aboodh decomposition method, Stochastic Modelling and Applications, 21 (2017), 23–30. |
[40] | R. Mittal, P. Singhal, Numerical solution of Burger's equation, Commun. Numer. Meth. Eng., 9 (1993), 397–406. http://dx.doi.org/10.1002/cnm.1640090505 doi: 10.1002/cnm.1640090505 |
[41] | A. Esen, O. Tasbozan, Numerical solution of time fractional Burgers equation by cubic B-spline finite elements, Mediterr. J. Math., 13 (2016), 1325–1337. http://dx.doi.org/10.1007/s00009-015-0555-x doi: 10.1007/s00009-015-0555-x |
[42] | A. Esen, N. Yagmurlu, O. Tasbozan, Approximate analytical solution to time-fractional damped Burger and Cahn-Allen equations, Appl. Math. Inf. Sci., 7 (2013), 1951–1956. http://dx.doi.org/10.12785/amis/070533 doi: 10.12785/amis/070533 |
[43] | E. Abdel-Salam, E. Yousif, Y. Arko, E. Gumma, Solution of moving boundary space-time fractional Burger's equation, J. Appl. Math., 2014 (2014), 218092. http://dx.doi.org/10.1155/2014/218092 doi: 10.1155/2014/218092 |
[44] | M. Inc, The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. http://dx.doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007 |
[45] | O. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. http://dx.doi.org/10.5373/jaram.1447.051912 doi: 10.5373/jaram.1447.051912 |
[46] | O. Arqub, Z. Abo-Hammour, R. Al-Badarneh, S. Momani, A reliable analytical method for solving higher-order initial value problems, Discrete Dyn. Nat. Soc., 2013 (2013), 673829. http://dx.doi.org/10.1155/2013/673829 doi: 10.1155/2013/673829 |
[47] | O. Arqub, A. El-Ajou, Z. Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique, Entropy, 16 (2014), 471–493. http://dx.doi.org/10.3390/e16010471 doi: 10.3390/e16010471 |
[48] | A. El-Ajou, O. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. http://dx.doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004 |
[49] | F. Xu, Y. Gao, X. Yang, H. Zhang, Construction of fractional power series solutions to fractional Boussinesq equations using residual power series method, Math. Probl. Eng., 2016 (2016), 5492535. http://dx.doi.org/10.1155/2016/5492535 doi: 10.1155/2016/5492535 |
[50] | J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 6159024. http://dx.doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024 |
[51] | I. Jaradat, M. Alquran, R. Abdel-Muhsen, An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers' models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93 (2018), 1911–1922. http://dx.doi.org/10.1007/s11071-018-4297-8 doi: 10.1007/s11071-018-4297-8 |
[52] | I. Jaradat, M. Alquran, K. Al-Khaled, An analytical study of physical models with inherited temporal and spatial memory, Eur. Phys. J. Plus, 133 (2018), 162. http://dx.doi.org/10.1140/epjp/i2018-12007-1 doi: 10.1140/epjp/i2018-12007-1 |
[53] | M. Liaqat, A. Khan, M. Alam, M. Pandit, S. Etemad, S. Rezapour, Approximate and closed-form solutions of Newell-Whitehead-Segel equations via modified conformable Shehu transform decomposition method, Math. Probl. Eng., 2022 (2022), 6752455. http://dx.doi.org/10.1155/2022/6752455 doi: 10.1155/2022/6752455 |
[54] | M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. http://dx.doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667 |
[55] | T. Eriqat, A. El-Ajou, M. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Soliton. Fract., 138 (2020), 109957. http://dx.doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957 |
[56] | M. Alquran, M. Alsukhour, M. Ali, I. Jaradat, Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems, Nonlinear Engineering, 10 (2021), 282–292. http://dx.doi.org/10.1515/nleng-2021-0022 doi: 10.1515/nleng-2021-0022 |
[57] | A. Khan, M. Junaid, I. Khan, F. Ali, K. Shah, D. Khan, Application of homotopy analysis natural transform method to the solution of nonlinear partial differential equations, Sci. Int. (Lahore), 29 (2017), 297–303. |
[58] | M. Zhang, Y. Liu, X. Zhou, Efficient homotopy perturbation method for fractional non-linear equations using Sumudu transform, Therm. Sci., 19 (2015), 1167–1171. http://dx.doi.org/10.2298/TSCI1504167Z doi: 10.2298/TSCI1504167Z |
[59] | G. Ojo, N. Mahmudov, Aboodh transform iterative method for spatial diffusion of a biological population with fractional-order, Mathematics, 9 (2021), 155. http://dx.doi.org/10.3390/math9020155 doi: 10.3390/math9020155 |
[60] | M. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler Kernel, Symmetry, 13 (2021), 2055. http://dx.doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055 |
[61] | A. Ganie, S. Noor, M. Al Huwayz, A. Shafee, S. El-Tantawy, Numerical simulations for fractional Hirota-Satsuma coupled Korteweg-de Vries systems, Open Phys., 22 (2024), 20240008. http://dx.doi.org/10.1515/phys-2024-0008 doi: 10.1515/phys-2024-0008 |
[62] | S. Noor, W. Albalawi, R. Shah, M. Al-Sawalha, S. Ismaeel, S. El-Tantawy, On the approximations to fractional nonlinear damped Burgers-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. http://dx.doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481 |
[63] | S. Noor, W. Albalawi, R. Shah, A. Shafee, S. Ismaeel, S. El-Tantawy, A comparative analytical investigation for some linear and nonlinear time-fractional partial differential equations in the framework of the Aboodh transformation, Front. Phys., 12 (2024), 1374049. http://dx.doi.org/10.3389/fphy.2024.1374049 doi: 10.3389/fphy.2024.1374049 |
[64] | K. Aboodh, The new integral transform "Aboodh transform", Global Journal of Pure and Applied Mathematics, 9 (2013), 35–43. |
[65] | S. Aggarwal, R. Chauhan, A comparative study of Mohand and Aboodh transforms, International Journal of Research in Advent Technology, 7 (2019), 520–529. |
[66] | M. Benattia, K. Belghaba, Application of the Aboodh transform for solving fractional delay differential equations, Universal Journal of Mathematics and Applications, 3 (2020), 93–101. http://dx.doi.org/10.32323/ujma.702033 doi: 10.32323/ujma.702033 |
[67] | B. Delgado, J. Macias-Diaz, On the general solutions of some non-homogeneous div-curl systems with Riemann-Liouville and Caputo fractional derivatives, Fractal Fract., 5 (2021), 117. http://dx.doi.org/10.3390/fractalfract5030117 doi: 10.3390/fractalfract5030117 |
[68] | S. Alshammari, M. Al-Smadi, I. Hashim, M. Alias, Residual power series technique for simulating fractional Bagley-Torvik problems emerging in applied physics, Appl. Sci., 9 (2019), 5029. http://dx.doi.org/10.3390/app9235029 doi: 10.3390/app9235029 |
[69] | W. Albalawi, S. El-Tantawy, S. Alkhateeb, The phase shift analysis of the colliding dissipative KdV solitons, J. Ocean Eng. Sci., 7 (2022), 521–527. http://dx.doi.org/10.1016/j.joes.2021.09.021 doi: 10.1016/j.joes.2021.09.021 |
[70] | B. Kashkari, S. El-Tantawy, A. Salas, L. El-Sherif, Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma, Chaos Soliton. Fract., 130 (2020), 109457. http://dx.doi.org/10.1016/j.chaos.2019.109457 doi: 10.1016/j.chaos.2019.109457 |
[71] | H. Alyousef, A. Salas, R. Matoog, S. El-Tantawy, On the analytical and numerical approximations to the forced damped Gardner Kawahara equation and modeling the nonlinear structures in a collisional plasma, Phys. Fluids, 34 (2022), 103105. http://dx.doi.org/10.1063/5.0109427 doi: 10.1063/5.0109427 |
[72] | S. El-Tantawy, A. Salas, H. Alyouse, M. Alharthi, Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma, Chinese J. Phys., 77 (2022), 2454–2471. http://dx.doi.org/10.1016/j.cjph.2022.04.009 doi: 10.1016/j.cjph.2022.04.009 |
[73] | A. Wazwaz, W. Alhejaili, S. El-Tantawy, Physical multiple shock solutions to the integrability of linear structures of Burgers hierarchy, Phys. Fluids, 35 (2023), 123101. http://dx.doi.org/10.1063/5.0177366 doi: 10.1063/5.0177366 |
[74] | S. El-Tantawy, A. Salas, H. Alyousef, M. Alharthi, Novel approximations to a nonplanar nonlinear Schrodinger equation and modeling nonplanar rogue waves/breathers in a complex plasma, Chaos Soliton. Fract., 163 (2022), 112612. http://dx.doi.org/10.1016/j.chaos.2022.112612 doi: 10.1016/j.chaos.2022.112612 |
[75] | W. Alhejaili, B. Mouhammadoul, Alim, C. Tiofack, A. Mohamadou, S. El-Tantawy, Modulational instability and associated breathers in collisional electronegative non-Maxwellian plasmas, Phys. Fluids, 35 (2023), 103101. http://dx.doi.org/10.1063/5.0166059 doi: 10.1063/5.0166059 |