Research article Special Issues

Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies

  • Within the framework of time fractional calculus using the Caputo operator, the Aboodh residual power series method and the Aboodh transform iterative method were implemented to analyze three basic equations in mathematical physics: the heat equation, the diffusion equation, and Burger's equation. We investigated the analytical solutions of these equations using Aboodh techniques, which provide practical and precise methods for solving fractional differential equations. We clarified the behavior and properties of the obtained approximations using the suggested methods through exact mathematical derivations and computational analysis. The obtained approximations were analyzed numerically and graphically to verify their high accuracy and stability against different related parameters. Additionally, we examined the impact of varying the fractional parameter the profiles of all derived approximations. Our results confirm these methods, efficacy in capturing the complicated dynamics of fractional systems. Therefore, they enhance the comprehension and examination of time-fractional equations in many scientific and technical contexts and in modeling different physical problems related to fluid mediums and plasma physics.

    Citation: Humaira Yasmin, Aljawhara H. Almuqrin. Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies[J]. AIMS Mathematics, 2024, 9(6): 16721-16752. doi: 10.3934/math.2024811

    Related Papers:

    [1] Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004
    [2] Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780
    [3] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [4] Huanhuan Zhang, Jia Mu . Periodic problem for non-instantaneous impulsive partial differential equations. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186
    [5] Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652
    [6] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [7] Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548
    [8] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [9] M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229
    [10] Dumitru Baleanu, Rabha W. Ibrahim . Optical applications of a generalized fractional integro-differential equation with periodicity. AIMS Mathematics, 2023, 8(5): 11953-11972. doi: 10.3934/math.2023604
  • Within the framework of time fractional calculus using the Caputo operator, the Aboodh residual power series method and the Aboodh transform iterative method were implemented to analyze three basic equations in mathematical physics: the heat equation, the diffusion equation, and Burger's equation. We investigated the analytical solutions of these equations using Aboodh techniques, which provide practical and precise methods for solving fractional differential equations. We clarified the behavior and properties of the obtained approximations using the suggested methods through exact mathematical derivations and computational analysis. The obtained approximations were analyzed numerically and graphically to verify their high accuracy and stability against different related parameters. Additionally, we examined the impact of varying the fractional parameter the profiles of all derived approximations. Our results confirm these methods, efficacy in capturing the complicated dynamics of fractional systems. Therefore, they enhance the comprehension and examination of time-fractional equations in many scientific and technical contexts and in modeling different physical problems related to fluid mediums and plasma physics.



    Fractional differential equations rise in many fields, such as biology, physics and engineering. There are many results about the existence of solutions and control problems (see [1,2,3,4,5,6]).

    It is well known that the nonexistence of nonconstant periodic solutions of fractional differential equations was shown in [7,8,11] and the existence of asymptotically periodic solutions was derived in [8,9,10,11]. Thus it gives rise to study the periodic solutions of fractional differential equations with periodic impulses.

    Recently, Fečkan and Wang [12] studied the existence of periodic solutions of fractional ordinary differential equations with impulses periodic condition and obtained many existence and asymptotic stability results for the Caputo's fractional derivative with fixed and varying lower limits. In this paper, we study the Caputo's fractional evolution equations with varying lower limits and we prove the existence of periodic mild solutions to this problem with the case of general periodic impulses as well as small equidistant and shifted impulses. We also study the Caputo's fractional evolution equations with fixed lower limits and small nonlinearities and derive the existence of its periodic mild solutions. The current results extend some results in [12].

    Set ξq(θ)=1qθ11qϖq(θ1q)0, ϖq(θ)=1πn=1(1)n1θnq1Γ(nq+1)n!sin(nπq), θ(0,). Note that ξq(θ) is a probability density function defined on (0,), namely ξq(θ)0, θ(0,) and 0ξq(θ)dθ=1.

    Define T:XX and S:XX given by

    T(t)=0ξq(θ)S(tqθ)dθ,  S(t)=q0θξq(θ)S(tqθ)dθ.

    Lemma 2.1. ([13,Lemmas 3.2,3.3]) The operators T(t) and S(t),t0 have following properties:

    (1) Suppose that supt0S(t)M. For any fixed t0, T() and S() are linear and bounded operators, i.e., for any uX,

    T(t)uMu and S(t)uMΓ(q)u.

    (2) {T(t),t0} and {S(t),t0} are strongly continuous.

    (3) {T(t),t>0} and {S(t),t>0} are compact, if {S(t),t>0} is compact.

    Let N0={0,1,,}. We consider the following impulsive fractional equations

    {cDqtk,tu(t)=Au(t)+f(t,u(t)), q(0,1), t(tk,tk+1), kN0,u(t+k)=u(tk)+Δk(u(tk)), kN,u(0)=u0, (2.1)

    where cDqtk,t denotes the Caputo's fractional time derivative of order q with the lower limit at tk, A:D(A)XX is the generator of a C0-semigroup {S(t),t0} on a Banach space X, f:R×XX satisfies some assumptions. We suppose the following conditions:

    (Ⅰ) f is continuous and T-periodic in t.

    (Ⅱ) There exist constants a>0, bk>0 such that

    {f(t,u)f(t,v)auv, tR, u,vX,uv+Δk(u)Δk(v)bkuv, kN, u,vX.

    (Ⅲ) There exists NN such that T=tN+1,tk+N+1=tk+T and Δk+N+1=Δk for any kN.

    It is well known [3] that (2.1) has a unique solution on R+ if the conditions (Ⅰ) and (Ⅱ) hold. So we can consider the Poincaré mapping

    P(u0)=u(T)+ΔN+1(u(T)).

    By [14,Lemma 2.2] we know that the fixed points of P determine T-periodic mild solutions of (2.1).

    Theorem 2.2. Assume that (I)-(III) hold. Let Ξ:=Nk=0MbkEq(Ma(tk+1tk)q), where Eq is the Mittag-Leffler function (see [3, p.40]), then there holds

    P(u)P(v)Ξuv, u,vX. (2.2)

    If Ξ<1, then (2.1) has a unique T-periodic mild solution, which is also asymptotically stable.

    Proof. By the mild solution of (2.1), we mean that uC((tk,tk+1),X) satisfying

    u(t)=T(ttk)u(t+k)+ttkS(ts)f(s,u(s))ds. (2.3)

    Let u and v be two solutions of (2.3) with u(0)=u0 and v(0)=v0, respectively. By (2.3) and (II), we can derive

    u(t)v(t)T(ttk)(u(t+k)v(t+k))+ttk(ts)q1S(ts)(f(s,u(s)f(s,v(s))dsMu(t+k)v(t+k)+MaΓ(q)ttk(ts)q1f(s,u(s)f(s,v(s))ds. (2.4)

    Applying Gronwall inequality [15, Corollary 2] to (2.4), we derive

    u(t)v(t)Mu(t+k)v(t+k)Eq(Ma(ttk)q), t(tk,tk+1), (2.5)

    which implies

    u(tk+1)v(tk+1)MEq(Ma(tk+1tk)q)u(t+k)v(t+k),k=0,1,,N. (2.6)

    By (2.6) and (Ⅱ), we derive

    P(u0)P(v0)=u(tN+1)v(tN+1)+ΔN+1(u(tN+1))ΔN+1(v(tN+1))bN+1u(tN+1)v(tN+1)(Nk=0MbkEq(Ma(tk+1tk)q))u0v0=Ξu0v0, (2.7)

    which implies that (2.2) is satisfied. Thus P:XX is a contraction if Ξ<1. Using Banach fixed point theorem, we obtain that P has a unique fixed point u0 if Ξ<1. In addition, since

    Pn(u0)Pn(v0)Ξnu0v0, v0X,

    we get that the corresponding periodic mild solution is asymptotically stable.

    We study

    {cDqkhu(t)=Au(t)+f(u(t)), q(0,1), t(kh,(k+1)h), kN0,u(kh+)=u(kh)+ˉΔhq, kN,u(0)=u0, (2.8)

    where h>0, ˉΔX, and f:XX is Lipschitz. We know [3] that under above assumptions, (2.8) has a unique mild solution u(u0,t) on R+, which is continuous in u0X, tR+{kh|kN} and left continuous in t ant impulsive points {kh|kN}. We can consider the Poincaré mapping

    Ph(u0)=u(u0,h+).

    Theorem 2.3. Let w(t) be a solution of following equations

    {w(t)=ˉΔ+1Γ(q+1)f(w(t)), t[0,T],w(0)=u0. (2.9)

    Then there exists a mild solution u(u0,t) of (2.8) on [0,T], satisfying

    u(u0,t)=w(tqq1)+O(hq).

    If w(t) is a stable periodic solution, then there exists a stable invariant curve of Poincaré mapping of (2.8) in a neighborhood of w(t). Note that h is sufficiently small.

    Proof. For any t(kh,(k+1)h),kN0, the mild solution of (2.8) is equivalent to

    u(u0,t)=T(tkh)u(kh+)+tkh(ts)q1S(ts)f(u(u0,s))ds=T(tkh)u(kh+)+tkh0(tkhs)q1S(tkhs)f(u(u(kh+),s))ds. (2.10)

    So

    u((k+1)h+)=T(h)u(kh+)+ˉΔhq+h0(hs)q1S(hs)f(u(u(kh+),s))ds=Ph(u(kh+)), (2.11)

    and

    Ph(u0)=u(u0,h+)=T(h)u0+ˉΔhq+h0(hs)q1S(hs)f(u(u0,s))ds. (2.12)

    Inserting

    u(u0,t)=T(t)u0+hqv(u0,t), t[0,h],

    into (2.10), we obtain

    v(u0,t)=1hqt0(ts)q1S(ts)f(T(t)u0+hqv(u0,t))ds=1hqt0(ts)q1S(ts)f(T(t)u0)ds+1hqt0(ts)q1S(ts)(f(T(t)u0+hqv(u0,t))f(T(t)u0))ds=1hqt0(ts)q1S(ts)f(T(t)u0)ds+O(hq),

    since

    t0(ts)q1S(ts)(f(T(t)u0+hqv(u0,t))f(T(t)u0))dst0(ts)q1S(ts)f(T(t)u0+hqv(u0,t))f(T(t)u0)dsMLlochqtqΓ(q+1)maxt[0,h]{v(u0,t)}h2qMLlocΓ(q+1)maxt[0,h]{v(u0,t)},

    where Lloc is a local Lipschitz constant of f. Thus we get

    u(u0,t)=T(t)u0+t0(ts)q1S(ts)f(T(t)u0)ds+O(h2q), t[0,h], (2.13)

    and (2.12) gives

    Ph(u0)=T(h)u0+ˉΔhq+h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    So (2.11) becomes

    u((k+1)h+)=T(h)u(kh+)+ˉΔhq+(k+1)hkh((k+1)hs)q1S((k+1)hs)f(T(h)u(kh+))ds+O(h2q). (2.14)

    Since T(t) and S(t) are strongly continuous,

    limt0T(t)=I and limt0S(t)=1Γ(q)I. (2.15)

    Thus (2.14) leads to its approximation

    w((k+1)h+)=w(kh+)+ˉΔhq+hqΓ(q+1)f(w(kh+)),

    which is the Euler numerical approximation of

    w(t)=ˉΔ+1Γ(q+1)f(w(t)).

    Note that (2.10) implies

    u(u0,t)T(tkh)u(kh+)=O(hq), t[kh,(k+1)h]. (2.16)

    Applying (2.15), (2.16) and the already known results about Euler approximation method in [16], we obtain the result of Theorem 2.3.

    Corollary 2.4. We can extend (2.8) for periodic impulses of following form

    {cDqkhu(t)=Au(t)+f(u(t)), t(kh,(k+1)h), kN0,u(kh+)=u(kh)+ˉΔkhq, kN,u(0)=u0, (2.17)

    where ˉΔkX satisfy ˉΔk+N+1=ˉΔk for any kN. Then Theorem 2.3 can directly extend to (2.17) with

    {w(t)=N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)), t[0,T], kN,w(0)=u0 (2.18)

    instead of (2.9).

    Proof. We can consider the Poincaré mapping

    Ph(u0)=u(u0,(N+1)h+),

    with a form of

    Ph=PN+1,hP1,h

    where

    Pk,h(u0)=ˉΔkhq+u(u0,h).

    By (2.13), we can derive

    Pk,h(u0)=ˉΔkhq+u(u0,h)=T(h)u0+ˉΔkhq+h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    Then we get

    Ph(u0)=T(h)u0+N+1k=1ˉΔkhq+(N+1)h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    By (2.15), we obtain that Ph(u0) leads to its approximation

    u0+N+1k=1ˉΔkhq+(N+1)hqΓ(q+1)f(u0). (2.19)

    Moreover, equations

    w(t)=N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t))

    has the Euler numerical approximation

    u0+hq(N+1k=1ˉΔkN+1+1Γ(q+1)f(u0))

    with the step size hq, and its approximation of N+1 iteration is (2.19), the approximation of Ph. Thus Theorem 2.3 can directly extend to (2.17) with (2.18).

    Now we consider following equations with small nonlinearities of the form

    {cDq0u(t)=Au(t)+ϵf(t,u(t)), q(0,1), t(tk,tk+1), kN0,u(t+k)=u(tk)+ϵΔk(u(tk)), kN,u(0)=u0, (3.1)

    where ϵ is a small parameter, cDq0 is the generalized Caputo fractional derivative with lower limit at 0. Then (3.1) has a unique mild solution u(ϵ,t). Give the Poincaré mapping

    P(ϵ,u0)=u(ϵ,T)+ϵΔN+1(u(ϵ,T)).

    Assume that

    (H1) f and Δk are C2-smooth.

    Then P(ϵ,u0) is also C2-smooth. In addition, we have

    u(ϵ,t)=T(t)u0+ϵω(t)+O(ϵ2),

    where ω(t) satisfies

    {cDq0ω(t)=Aω(t)+f(t,T(t)u0), t(tk,tk+1), k=0,1,,N,ω(t+k)=ω(tk)+Δk(T(tk)u0), k=1,2,,N+1,ω(0)=0,

    and

    ω(T)=Nk=1T(Ttk)Δk(T(tk)u0)+T0(Ts)q1S(Ts)f(s,T(s)u0)ds.

    Thus we derive

    {P(ϵ,u0)=u0+M(ϵ,u0)+O(ϵ2)M(ϵ,u0)=(T(T)I)u0+ϵω(T)+ϵΔN+1(T(T)u0). (3.2)

    Theorem 3.1. Suppose that (I), (III) and (H1) hold.

    1). If (T(T)I) has a continuous inverse, i.e. (T(T)I)1 exists and continuous, then (3.1) has a unique T-periodic mild solution located near 0 for any ϵ0 small.

    2). If (T(T)I) is not invertible, we suppose that ker(T(T)I)=[u1,,uk] and X=im(T(T)I)X1 for a closed subspace X1 with dimX1=k. If there is v0[u1,,uk] such that B(0,v0)=0 (see (3.7)) and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ0 small.

    3). If rσ(Du0M(ϵ,u0))<0, then the T-periodic mild solution is asymptotically stable. If rσ(Du0M(ϵ,u0))(0,+), then the T-periodic mild solution is unstable.

    Proof. The fixed point u0 of P(ϵ,x0) determines the T-periodic mild solution of (3.1), which is equivalent to

    M(ϵ,u0)+O(ϵ2)=0. (3.3)

    Note that M(0,u0)=(T(T)I)u0. If (T(T)I) has a continuous inverse, then (3.3) can be solved by the implicit function theorem to get its solution u0(ϵ) with u0(0)=0.

    If (T(T)I) is not invertible, then we take a decomposition u0=v+w, v[u1,,uk], take bounded projections Q1:Xim(T(T)I), Q2:XX1, I=Q1+Q2 and decompose (3.3) to

    Q1M(ϵ,v+w)+Q1O(ϵ2)=0, (3.4)

    and

    Q2M(ϵ,v+w)+Q2O(ϵ2)=0. (3.5)

    Now Q1M(0,v+w)=(T(T)I)w, so we can solve by implicit function theorem from (3.4), w=w(ϵ,v) with w(0,v)=0. Inserting this solution into (3.5), we get

    B(ϵ,v)=1ϵ(Q2M(ϵ,v+w)+Q2O(ϵ2))=Q2ω(T)+Q2ΔN+1(T(t)v+w(ϵ,v))+O(ϵ). (3.6)

    So

    B(0,v)=Nk=1Q2T(Ttk)Δk(T(tk)v)+Q2T0(Ts)q1S(Ts)f(s,T(s)v)ds. (3.7)

    Consequently we get, if there is v0[u1,,uk] such that B(0,v0)=0 and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ0 small.

    In addition, Du0P(ϵ,u0(ϵ))=I+Du0M(ϵ,u0)+O(ϵ2). Thus we can directly derive the stability and instability results by the arguments in [17].

    In this section, we give an example to demonstrate Theorem 2.2.

    Example 4.1. Consider the following impulsive fractional partial differential equation:

    { cD12tk,tu(t,y)=2y2u(t,y)+sinu(t,y)+cos2πt,  t(tk,tk+1), kN0,  y[0,π], Δk(u(tk,y))=u(t+k,y)u(tk,y)=ξu(tk,y),  kN,  y[0,π], u(t,0)=u(t,π)=0,  t(tk,tk+1),  kN0, u(0,y)=u0(y),  y[0,π], (4.1)

    for ξR, tk=k3. Let X=L2[0,π]. Define the operator A:D(A)XX by Au=d2udy2 with the domain

    D(A)={uXdudy,d2udy2X, u(0)=u(π)=0}.

    Then A is the infinitesimal generator of a C0-semigroup {S(t),t0} on X and S(t)M=1 for any t0. Denote u(,y)=u()(y) and define f:[0,)×XX by

    f(t,u)(y)=sinu(y)+cos2πt.

    Set T=t3=1, tk+3=tk+1, Δk+3=Δk, a=1, bk=|1+ξ|. Obviously, conditions (I)-(III) hold. Note that

    Ξ=2k=0|1+ξ|E12(13)=|1+ξ|3(E12(13))3.

    Letting Ξ<1, we get E12(13)1<ξ<E12(13)1. Now all assumptions of Theorem 2.2 hold. Hence, if E12(13)1<ξ<E12(13)1, (4.1) has a unique 1-periodic mild solution, which is also asymptotically stable.

    This paper deals with the existence and stability of periodic solutions of impulsive fractional evolution equations with the case of varying lower limits and fixed lower limits. Although, Fečkan and Wang [12] prove the existence of periodic solutions of impulsive fractional ordinary differential equations in finite dimensional Euclidean space, we extend some results to impulsive fractional evolution equation on Banach space by involving operator semigroup theory. Our results can be applied to some impulsive fractional partial differential equations and the proposed approach can be extended to study the similar problem for periodic impulsive fractional evolution inclusions.

    The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. This research is supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Foundation of Postgraduate of Guizhou Province (YJSCXJH[2019]031), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 2/0153/16 and No. 1/0078/17.

    All authors declare no conflicts of interest in this paper.



    [1] H. Srivastava, R. Shah, H. Khan, M. Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Method. Appl. Sci., 43 (2020), 199–212. http://dx.doi.org/10.1002/mma.5846 doi: 10.1002/mma.5846
    [2] A. Alshehry, M. Imran, A. Khan, R. Shah, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular kernel operators, Symmetry, 14 (2022), 1463. http://dx.doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463
    [3] H. Yasmin, N. Aljahdaly, A. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled konno-onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. http://dx.doi.org/10.3390/math11122686 doi: 10.3390/math11122686
    [4] S. El-Tantawy, H. Alyousef, R. Matoog, R. Shah, On the optical soliton solutions to the fractional complex structured (1+1)-dimensional perturbed gerdjikov-ivanov equation, Phys. Scr., 99 (2024), 035249. http://dx.doi.org/10.1088/1402-4896/ad241b doi: 10.1088/1402-4896/ad241b
    [5] S. El-Tantawy, R. Matoog, A. Alrowaily, S. Ismaeel, On the shock wave approximation to fractional generalized Burger-Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105. http://dx.doi.org/10.1063/5.0187127 doi: 10.1063/5.0187127
    [6] J. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. http://dx.doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [7] J. Liu, F. Geng, An explanation on four new definitions of fractional operators, Acta Math. Sci., 44 (2024), 1271–1279. http://dx.doi.org/10.1007/s10473-024-0405-7 doi: 10.1007/s10473-024-0405-7
    [8] A. Majeed, M. Kamran, M. Iqbal, D. Baleanu, Solving time fractional Burgers and Fishers equations using cubic B-spline approximation method, Adv. Differ. Equ., 2020 (2020), 175. http://dx.doi.org/10.1186/s13662-020-02619-8 doi: 10.1186/s13662-020-02619-8
    [9] D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. http://dx.doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
    [10] M. Hajad, V. Tangwarodomnukun, C. Jaturanonda, C. Dumkum, Laser cutting path optimization using simulated annealing with an adaptive large neighborhood search, Int. J. Adv. Manuf. Technol., 103 (2019), 781–792. http://dx.doi.org/10.1007/s00170-019-03569-6 doi: 10.1007/s00170-019-03569-6
    [11] R. El-Nabulsi, The fractional Boltzmann transport equation, Comput. Math. Appl., 62 (2011), 1568–1575. http://dx.doi.org/10.1016/j.camwa.2011.03.040 doi: 10.1016/j.camwa.2011.03.040
    [12] A. Khan, J. Iqbal, R. Shah, A new efficient two-step iterative method for solving absolute value equations, Eng. Computation., 41 (2024), 597–610. http://dx.doi.org/10.1108/EC-11-2023-0781 doi: 10.1108/EC-11-2023-0781
    [13] A. Atangana, J. Gomez-Aguilar, Numerical approximation of Riemann Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Part. D. E., 34 (2018), 1502–1523. http://dx.doi.org/10.1002/num.22195 doi: 10.1002/num.22195
    [14] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. http://dx.doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0
    [15] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. http://dx.doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [16] L. He, A. Valocchi, C. Duarte, A transient global-local generalized FEM for parabolic and hyperbolic PDEs with multi-space/time scales, J. Comput. Phys., 488 (2023), 112179. http://dx.doi.org/10.1016/j.jcp.2023.112179 doi: 10.1016/j.jcp.2023.112179
    [17] L. He, A. Valocchi, C. Duarte, An adaptive global-local generalized FEM for multiscale advection-diffusion problems, Comput. Method. Appl. M., 418 (2024), 116548. http://dx.doi.org/10.1016/j.cma.2023.116548 doi: 10.1016/j.cma.2023.116548
    [18] Y. Kai, S. Chen, K. Zhang, Z. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Waves Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2044541
    [19] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. http://dx.doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [20] W. Liu, X. Bai, H. Yang, R. Bao, J. Liu, Tendon driven bistable origami flexible gripper for high-speed adaptive grasping, IEEE Robot. Autom. Let., 9 (2024), 5417–5424. http://dx.doi.org/10.1109/LRA.2024.3389413 doi: 10.1109/LRA.2024.3389413
    [21] B. Cuahutenango-Barro, M. Taneco-Hernandez, J. Gomez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos Soliton. Fract., 115 (2018), 283–299. http://dx.doi.org/10.1016/j.chaos.2018.09.002 doi: 10.1016/j.chaos.2018.09.002
    [22] J. Gomez-Gardenes, V. Latora, Entropy rate of diffusion processes on complex networks, Phys. Rev. E, 78 (2008), 065102. http://dx.doi.org/10.1103/PhysRevE.78.065102 doi: 10.1103/PhysRevE.78.065102
    [23] A. Lopes, J. Tenreiro Machado, Entropy analysis of soccer dynamics, Entropy, 21 (2019), 187. http://dx.doi.org/10.3390/e21020187 doi: 10.3390/e21020187
    [24] A. Bejan, Second-law analysis in heat transfer and thermal design, Advances in Heat Transfer, 15 (1982), 1–58. http://dx.doi.org/10.1016/S0065-2717(08)70172-2 doi: 10.1016/S0065-2717(08)70172-2
    [25] M. Syam, M. Al-Refai, Solving fractional diffusion equation via the collocation method based on fractional Legendre functions, Journal of Computational Methods in Physics, 2014 (2014), 381074. http://dx.doi.org/10.1155/2014/381074 doi: 10.1155/2014/381074
    [26] E. Lenzi, M. Dos Santos, F. Michels, R. Mendes, L. Evangelista, Solutions of some nonlinear diffusion equations and generalized entropy framework, Entropy, 15 (2013), 3931–3940. http://dx.doi.org/10.3390/e15093931 doi: 10.3390/e15093931
    [27] J. Prehl, F. Boldt, K. Hoffmann, C. Essex, Symmetric fractional diffusion and entropy production, Entropy, 18 (2016), 275. http://dx.doi.org/10.3390/e18070275 doi: 10.3390/e18070275
    [28] M. Dehghan, M. Abbaszadeh, A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation, Comput. Math. Appl., 75 (2018), 2903–2914. http://dx.doi.org/10.1016/j.camwa.2018.01.020 doi: 10.1016/j.camwa.2018.01.020
    [29] S. Lei, Y. Huang, Fast algorithms for high-order numerical methods for space-fractional diffusion equations, Int. J. Comput. Math., 94 (2017), 1062–1078. http://dx.doi.org/10.1080/00207160.2016.1149579 doi: 10.1080/00207160.2016.1149579
    [30] N. Tripathi, S. Das, S. Ong, H. Jafari, M. Al Qurashi, Solution of higher order nonlinear time-fractional reaction diffusion equation, Entropy, 18 (2016), 329. http://dx.doi.org/10.3390/e18090329 doi: 10.3390/e18090329
    [31] D. Kumar, J. Singh, S. Kumar, Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method, Journal of the Association of Arab Universities for Basic and Applied Sciences, 17 (2015), 20–26. http://dx.doi.org/10.1016/j.jaubas.2014.02.002 doi: 10.1016/j.jaubas.2014.02.002
    [32] F. Zafarghandi, M. Mohammadi, E. Babolian, S. Javadi, Radial basis functions method for solving the fractional diffusion equations, Appl. Math. Comput., 342 (2019), 224–246. http://dx.doi.org/10.1016/j.amc.2018.08.043 doi: 10.1016/j.amc.2018.08.043
    [33] A. Bejan, Second law analysis in heat transfer, Energy, 5 (1980), 720–732. http://dx.doi.org/10.1016/0360-5442(80)90091-2 doi: 10.1016/0360-5442(80)90091-2
    [34] S. Sarwar, S. Alkhalaf, S. Iqbal, M. Zahid, A note on optimal homotopy asymptotic method for the solutions of fractional order heat-and wave-like partial differential equations, Comput. Math. Appl., 70 (2015), 942–953. http://dx.doi.org/10.1016/j.camwa.2015.06.017 doi: 10.1016/j.camwa.2015.06.017
    [35] A. Bokhari, G. Mohammad, M. Mustafa, F. Zaman, Adomian decomposition method for a nonlinear heat equation with temperature dependent thermal properties, Math. Probl. Eng., 2009 (2009), 926086. http://dx.doi.org/10.1155/2009/926086 doi: 10.1155/2009/926086
    [36] D. Shou, J. He, Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients, Phys. Lett. A, 372 (2008), 233–237. http://dx.doi.org/10.1016/j.physleta.2007.07.011 doi: 10.1016/j.physleta.2007.07.011
    [37] D. Rostamy, K. Karimi, Bernstein polynomials for solving fractional heat- and wave-like equations, FCAA, 15 (2012), 556–571. http://dx.doi.org/10.2478/s13540-012-0039-7 doi: 10.2478/s13540-012-0039-7
    [38] C. Liu, S. Kong, S. Yuan, Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem, Therm. Sci., 17 (2013), 715–721. http://dx.doi.org/10.2298/TSCI120826075L doi: 10.2298/TSCI120826075L
    [39] R. Nuruddeen, A. Nass, Exact solutions of wave-type equations by the Aboodh decomposition method, Stochastic Modelling and Applications, 21 (2017), 23–30.
    [40] R. Mittal, P. Singhal, Numerical solution of Burger's equation, Commun. Numer. Meth. Eng., 9 (1993), 397–406. http://dx.doi.org/10.1002/cnm.1640090505 doi: 10.1002/cnm.1640090505
    [41] A. Esen, O. Tasbozan, Numerical solution of time fractional Burgers equation by cubic B-spline finite elements, Mediterr. J. Math., 13 (2016), 1325–1337. http://dx.doi.org/10.1007/s00009-015-0555-x doi: 10.1007/s00009-015-0555-x
    [42] A. Esen, N. Yagmurlu, O. Tasbozan, Approximate analytical solution to time-fractional damped Burger and Cahn-Allen equations, Appl. Math. Inf. Sci., 7 (2013), 1951–1956. http://dx.doi.org/10.12785/amis/070533 doi: 10.12785/amis/070533
    [43] E. Abdel-Salam, E. Yousif, Y. Arko, E. Gumma, Solution of moving boundary space-time fractional Burger's equation, J. Appl. Math., 2014 (2014), 218092. http://dx.doi.org/10.1155/2014/218092 doi: 10.1155/2014/218092
    [44] M. Inc, The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. http://dx.doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
    [45] O. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. http://dx.doi.org/10.5373/jaram.1447.051912 doi: 10.5373/jaram.1447.051912
    [46] O. Arqub, Z. Abo-Hammour, R. Al-Badarneh, S. Momani, A reliable analytical method for solving higher-order initial value problems, Discrete Dyn. Nat. Soc., 2013 (2013), 673829. http://dx.doi.org/10.1155/2013/673829 doi: 10.1155/2013/673829
    [47] O. Arqub, A. El-Ajou, Z. Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique, Entropy, 16 (2014), 471–493. http://dx.doi.org/10.3390/e16010471 doi: 10.3390/e16010471
    [48] A. El-Ajou, O. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. http://dx.doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
    [49] F. Xu, Y. Gao, X. Yang, H. Zhang, Construction of fractional power series solutions to fractional Boussinesq equations using residual power series method, Math. Probl. Eng., 2016 (2016), 5492535. http://dx.doi.org/10.1155/2016/5492535 doi: 10.1155/2016/5492535
    [50] J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 6159024. http://dx.doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
    [51] I. Jaradat, M. Alquran, R. Abdel-Muhsen, An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers' models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93 (2018), 1911–1922. http://dx.doi.org/10.1007/s11071-018-4297-8 doi: 10.1007/s11071-018-4297-8
    [52] I. Jaradat, M. Alquran, K. Al-Khaled, An analytical study of physical models with inherited temporal and spatial memory, Eur. Phys. J. Plus, 133 (2018), 162. http://dx.doi.org/10.1140/epjp/i2018-12007-1 doi: 10.1140/epjp/i2018-12007-1
    [53] M. Liaqat, A. Khan, M. Alam, M. Pandit, S. Etemad, S. Rezapour, Approximate and closed-form solutions of Newell-Whitehead-Segel equations via modified conformable Shehu transform decomposition method, Math. Probl. Eng., 2022 (2022), 6752455. http://dx.doi.org/10.1155/2022/6752455 doi: 10.1155/2022/6752455
    [54] M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. http://dx.doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667
    [55] T. Eriqat, A. El-Ajou, M. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Soliton. Fract., 138 (2020), 109957. http://dx.doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
    [56] M. Alquran, M. Alsukhour, M. Ali, I. Jaradat, Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems, Nonlinear Engineering, 10 (2021), 282–292. http://dx.doi.org/10.1515/nleng-2021-0022 doi: 10.1515/nleng-2021-0022
    [57] A. Khan, M. Junaid, I. Khan, F. Ali, K. Shah, D. Khan, Application of homotopy analysis natural transform method to the solution of nonlinear partial differential equations, Sci. Int. (Lahore), 29 (2017), 297–303.
    [58] M. Zhang, Y. Liu, X. Zhou, Efficient homotopy perturbation method for fractional non-linear equations using Sumudu transform, Therm. Sci., 19 (2015), 1167–1171. http://dx.doi.org/10.2298/TSCI1504167Z doi: 10.2298/TSCI1504167Z
    [59] G. Ojo, N. Mahmudov, Aboodh transform iterative method for spatial diffusion of a biological population with fractional-order, Mathematics, 9 (2021), 155. http://dx.doi.org/10.3390/math9020155 doi: 10.3390/math9020155
    [60] M. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler Kernel, Symmetry, 13 (2021), 2055. http://dx.doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055
    [61] A. Ganie, S. Noor, M. Al Huwayz, A. Shafee, S. El-Tantawy, Numerical simulations for fractional Hirota-Satsuma coupled Korteweg-de Vries systems, Open Phys., 22 (2024), 20240008. http://dx.doi.org/10.1515/phys-2024-0008 doi: 10.1515/phys-2024-0008
    [62] S. Noor, W. Albalawi, R. Shah, M. Al-Sawalha, S. Ismaeel, S. El-Tantawy, On the approximations to fractional nonlinear damped Burgers-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. http://dx.doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
    [63] S. Noor, W. Albalawi, R. Shah, A. Shafee, S. Ismaeel, S. El-Tantawy, A comparative analytical investigation for some linear and nonlinear time-fractional partial differential equations in the framework of the Aboodh transformation, Front. Phys., 12 (2024), 1374049. http://dx.doi.org/10.3389/fphy.2024.1374049 doi: 10.3389/fphy.2024.1374049
    [64] K. Aboodh, The new integral transform "Aboodh transform", Global Journal of Pure and Applied Mathematics, 9 (2013), 35–43.
    [65] S. Aggarwal, R. Chauhan, A comparative study of Mohand and Aboodh transforms, International Journal of Research in Advent Technology, 7 (2019), 520–529.
    [66] M. Benattia, K. Belghaba, Application of the Aboodh transform for solving fractional delay differential equations, Universal Journal of Mathematics and Applications, 3 (2020), 93–101. http://dx.doi.org/10.32323/ujma.702033 doi: 10.32323/ujma.702033
    [67] B. Delgado, J. Macias-Diaz, On the general solutions of some non-homogeneous div-curl systems with Riemann-Liouville and Caputo fractional derivatives, Fractal Fract., 5 (2021), 117. http://dx.doi.org/10.3390/fractalfract5030117 doi: 10.3390/fractalfract5030117
    [68] S. Alshammari, M. Al-Smadi, I. Hashim, M. Alias, Residual power series technique for simulating fractional Bagley-Torvik problems emerging in applied physics, Appl. Sci., 9 (2019), 5029. http://dx.doi.org/10.3390/app9235029 doi: 10.3390/app9235029
    [69] W. Albalawi, S. El-Tantawy, S. Alkhateeb, The phase shift analysis of the colliding dissipative KdV solitons, J. Ocean Eng. Sci., 7 (2022), 521–527. http://dx.doi.org/10.1016/j.joes.2021.09.021 doi: 10.1016/j.joes.2021.09.021
    [70] B. Kashkari, S. El-Tantawy, A. Salas, L. El-Sherif, Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma, Chaos Soliton. Fract., 130 (2020), 109457. http://dx.doi.org/10.1016/j.chaos.2019.109457 doi: 10.1016/j.chaos.2019.109457
    [71] H. Alyousef, A. Salas, R. Matoog, S. El-Tantawy, On the analytical and numerical approximations to the forced damped Gardner Kawahara equation and modeling the nonlinear structures in a collisional plasma, Phys. Fluids, 34 (2022), 103105. http://dx.doi.org/10.1063/5.0109427 doi: 10.1063/5.0109427
    [72] S. El-Tantawy, A. Salas, H. Alyouse, M. Alharthi, Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma, Chinese J. Phys., 77 (2022), 2454–2471. http://dx.doi.org/10.1016/j.cjph.2022.04.009 doi: 10.1016/j.cjph.2022.04.009
    [73] A. Wazwaz, W. Alhejaili, S. El-Tantawy, Physical multiple shock solutions to the integrability of linear structures of Burgers hierarchy, Phys. Fluids, 35 (2023), 123101. http://dx.doi.org/10.1063/5.0177366 doi: 10.1063/5.0177366
    [74] S. El-Tantawy, A. Salas, H. Alyousef, M. Alharthi, Novel approximations to a nonplanar nonlinear Schrodinger equation and modeling nonplanar rogue waves/breathers in a complex plasma, Chaos Soliton. Fract., 163 (2022), 112612. http://dx.doi.org/10.1016/j.chaos.2022.112612 doi: 10.1016/j.chaos.2022.112612
    [75] W. Alhejaili, B. Mouhammadoul, Alim, C. Tiofack, A. Mohamadou, S. El-Tantawy, Modulational instability and associated breathers in collisional electronegative non-Maxwellian plasmas, Phys. Fluids, 35 (2023), 103101. http://dx.doi.org/10.1063/5.0166059 doi: 10.1063/5.0166059
  • This article has been cited by:

    1. Xinguang Zhang, Lixin Yu, Jiqiang Jiang, Yonghong Wu, Yujun Cui, Gisele Mophou, Solutions for a Singular Hadamard-Type Fractional Differential Equation by the Spectral Construct Analysis, 2020, 2020, 2314-8888, 1, 10.1155/2020/8392397
    2. Xinguang Zhang, Jiqiang Jiang, Lishan Liu, Yonghong Wu, Extremal Solutions for a Class of Tempered Fractional Turbulent Flow Equations in a Porous Medium, 2020, 2020, 1024-123X, 1, 10.1155/2020/2492193
    3. Jingjing Tan, Xinguang Zhang, Lishan Liu, Yonghong Wu, Mostafa M. A. Khater, An Iterative Algorithm for Solving n -Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions, 2021, 2021, 1099-0526, 1, 10.1155/2021/8898859
    4. Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad, Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions, 2022, 7, 2473-6988, 8314, 10.3934/math.2022463
    5. Lianjing Ni, Liping Wang, Farooq Haq, Islam Nassar, Sarp Erkir, The Effect of Children’s Innovative Education Courses Based on Fractional Differential Equations, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0039
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(976) PDF downloads(96) Cited by(2)

Figures and Tables

Figures(8)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog