Research article Special Issues

A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative

  • Received: 12 May 2024 Revised: 15 July 2024 Accepted: 02 August 2024 Published: 27 September 2024
  • MSC : 35C05, 35R11, 65R10

  • In this research, we propose a new numerical method that combines with the Caputo-Fabrizio Elzaki transform and the q-homotopy analysis transform method. This work aims to analyze the Caputo-Fabrizio fractional Newell-Whitehead-Segel (NWS) equation utilizing the Caputo-Fabrizio q-Elzaki homotopy analysis transform method. The Newell-Whitehead-Segel equation is a partial differential equation employed for modeling the dynamics of reaction-diffusion systems, specifically in the realm of pattern generation in biological and chemical systems. A convergence analysis of the proposed method was performed. Two-dimensional and three-dimensional graphs of the solutions have been drawn with the Maple software. It is seen that the resulting proposed method is more powerful and effective than the Aboodh transform homotopy perturbation method and conformable Laplace decomposition method in the results.

    Citation: Aslı Alkan, Halil Anaç. A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative[J]. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358

    Related Papers:

  • In this research, we propose a new numerical method that combines with the Caputo-Fabrizio Elzaki transform and the q-homotopy analysis transform method. This work aims to analyze the Caputo-Fabrizio fractional Newell-Whitehead-Segel (NWS) equation utilizing the Caputo-Fabrizio q-Elzaki homotopy analysis transform method. The Newell-Whitehead-Segel equation is a partial differential equation employed for modeling the dynamics of reaction-diffusion systems, specifically in the realm of pattern generation in biological and chemical systems. A convergence analysis of the proposed method was performed. Two-dimensional and three-dimensional graphs of the solutions have been drawn with the Maple software. It is seen that the resulting proposed method is more powerful and effective than the Aboodh transform homotopy perturbation method and conformable Laplace decomposition method in the results.



    加载中


    [1] S. Qureshi, N. A. Rangaig, D. Baleanu, New numerical aspects of Caputo-Fabrizio fractional derivative operator, Mathematics, 7 (2019), 1–14. https://doi.org/10.3390/math7040374 doi: 10.3390/math7040374
    [2] J. Soontharanon, S. Chasreechai, T. Sitthiwirattham, A coupled system of fractional difference equations with nonlocal fractional sum boundary conditions on the discrete half-line, Mathematics, 7 (2019), 1–22. https://doi.org/10.3390/math7030256 doi: 10.3390/math7030256
    [3] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [4] M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021–1032.
    [5] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, World Scientific, 2012.
    [6] F. Mainardi, A note on the equivalence of fractional relaxation equations to differential equations with varying coefficients, Mathematics, 6 (2018), 1–5. https://doi.org/10.3390/math6010008 doi: 10.3390/math6010008
    [7] K. M. Owolabi, A. Atangana, Chaotic behaviour in system of noninteger-order ordinary differential equations, Chaos Solitons Fract., 115 (2018), 362–370. https://doi.org/10.1016/j.chaos.2018.07.034 doi: 10.1016/j.chaos.2018.07.034
    [8] K. M. Owolabi, A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems, Comput. Appl. Math., 37 (2018), 2166–2189. https://doi.org/10.1007/s40314-017-0445-x doi: 10.1007/s40314-017-0445-x
    [9] N. A. Rangaig, V. C. Convicto, On fractional modelling of dye removal using fractional derivative with non-singular kernel, J. King Saud Univ. Sci., 31 (2019), 525–527. https://doi.org/10.1016/j.jksus.2018.01.006 doi: 10.1016/j.jksus.2018.01.006
    [10] N. A. Rangaig, A. A. G. Pido, C. T. Pada-Dulpina, On the fractional-order dynamics of a double pendulum with a forcing constraint using the nonsingular fractional derivative approach, J. Appl. Math. Comput. Mech., 19 (2020), 95–106. https://doi.org/10.17512/jamcm.2020.2.08 doi: 10.17512/jamcm.2020.2.08
    [11] P. Veeresha, D. G. Prakasha, D. Baleanu, An efficient numerical technique for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equation, Mathematics, 7 (2019), 1–18. https://doi.org/10.3390/math7030265 doi: 10.3390/math7030265
    [12] P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel simulations to the time-fractional Fisher's equation, Math. Sci., 13 (2019), 33–42. https://doi.org/10.1007/s40096-019-0276-6 doi: 10.1007/s40096-019-0276-6
    [13] A. Alkan, T. Akturk, H. Bulut, The travelıng wave solutıons of the conformable time-fractıonal zoomeron equation by usıng the modıfıed exponentıal functıon method, Eskişehir Tech. Univ. J. Sci. Tech. A Appl. Sci. Eng., 25 (2024), 108–114. https://doi.org/10.18038/estubtda.1370631 doi: 10.18038/estubtda.1370631
    [14] C. Li, F. Zeng, Numerical methods for fractional calculus, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b18503
    [15] N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani, et al., Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results Phys., 7 (2017), 789–800. https://doi.org/10.1016/j.rinp.2017.01.025 doi: 10.1016/j.rinp.2017.01.025
    [16] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005.
    [17] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [18] R. Hilfer, Y. Luchko, Desiderata for fractional derivatives and integrals, Mathematics, 7 (2019), 1–5. https://doi.org/10.3390/math7020149 doi: 10.3390/math7020149
    [19] A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations, Chaos Solitons Fract., 116 (2018), 220–226. https://doi.org/10.1016/j.chaos.2018.09.036 doi: 10.1016/j.chaos.2018.09.036
    [20] M. Inc, A. Yusuf, A. I. Aliyu, D. Baleanu, Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana-Baleanu derivative, Phys. A, 506 (2018), 520–531. https://doi.org/10.1016/j.physa.2018.04.092 doi: 10.1016/j.physa.2018.04.092
    [21] M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1–11. http://dx.doi.org/10.18576/pfda/020101
    [22] X. J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel: application to the modelling of the steady heat flow, Thermal Sci., 20 (2016), 753–756. https://doi.org/10.2298/TSCI151224222Y doi: 10.2298/TSCI151224222Y
    [23] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [24] K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31–52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be doi: 10.1023/B:NUMA.0000027736.85078.be
    [25] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods, Comput. Methods Appl. Mech. Eng., 194 (2005), 743–773. https://doi.org/10.1016/j.cma.2004.06.006 doi: 10.1016/j.cma.2004.06.006
    [26] R. Garrappa, Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6 (2018), 1–23. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016
    [27] K. L. Wang, C. H. He, A remark on Wang's fractal variational principle, Fractals, 27 (2019), 1950134. https://doi.org/10.1142/S0218348X19501342 doi: 10.1142/S0218348X19501342
    [28] Y. H. Wei, Y. Q. Chen, S. S. Cheng, Y. Wang, A note on short memory principle of fractional calculus, Fract. Calc. Appl. Anal., 20 (2017), 1382–1404. https://doi.org/10.1515/fca-2017-0073 doi: 10.1515/fca-2017-0073
    [29] M. Caputo, F. Mauro, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [30] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [31] E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
    [32] F. Ali, M. Saqib, I. Khan, N. A. Sheikh, Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters'-B fluid model, Eur. Phys. J. Plus, 131 (2016), 377. https://doi.org/10.1140/epjp/i2016-16377-x doi: 10.1140/epjp/i2016-16377-x
    [33] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956. https://doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
    [34] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [35] J. H. He, N. Anjum, C. H. He, A. A. Alsolami, Beyond Laplace and Fourier transforms challenges and future prospects, Thermal Sci., 27 (2023), 5075–5089. https://doi.org/10.2298/TSCI230804224H doi: 10.2298/TSCI230804224H
    [36] T. M. Elzaki, The new integral transform Elzaki transform, Global J. Pure Appl. Math., 7 (2011), 57–64.
    [37] T. M. Elzaki, Applications of new transform "Elzaki transform" to partial differential equations, Global J. Pure Appl. Math., 7 (2011), 65–70.
    [38] T. M. Elzaki, S. M. Elzaki, On the Elzaki transform and ordinary differential equation with variable coefficients, Adv. Theor. Appl. Math., 6 (2011), 41–46.
    [39] T. M. Elzaki, S. M. Elzaki, E. A. Elnour, Applications of new transform "Elzaki transform" to mechanics, electrical circuits and beams problems, Global J. Pure Appl. Math., 4 (2012), 25–34.
    [40] A. M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102 (1999), 77–86. https://doi.org/10.1016/S0096-3003(98)10024-3 doi: 10.1016/S0096-3003(98)10024-3
    [41] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79. https://doi.org/10.1016/S0096-3003(01)00312-5 doi: 10.1016/S0096-3003(01)00312-5
    [42] J. H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005
    [43] M. Y. Adamu, P. Ogenyi, New approach to parameterized homotopy perturbation method, Thermal Sci., 22 (2018), 1865–1870. https://doi.org/10.2298/TSCI1804865A doi: 10.2298/TSCI1804865A
    [44] A. Alkan, Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation, Karamanoğlu Mehmetbey Ü niv. Mühendislik Doğa Bilim. Derg., 4 (2022), 117–134. https://doi.org/10.55213/kmujens.1206517 doi: 10.55213/kmujens.1206517
    [45] A. Alkan, H. Anaç , The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method, AIMS Math., 9 (2024), 25333–25359. https://doi.org/10.3934/math.20241237 doi: 10.3934/math.20241237
    [46] T. M. Elzaki, Solution of nonlinear differential equations using mixture of Elzaki transform and differential transform method, Int. Math. Forum, 7 (2012), 631–638.
    [47] T. M. Elzaki, E. M. A. Hilal, Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations, Math. Theory Model., 2 (2012), 33–42.
    [48] T. M. Elzaki, H. Kim, The solution of radial diffusivity and shock wave equations by Elzaki variational iteration method, Int. J. Math. Anal., 9 (2015), 1065–1071. http://dx.doi.org/10.12988/ijma.2015.5242
    [49] R. M. Jena, S. Chakraverty, Solving time-fractional Navier-Stokes equations using homotopy perturbation Elzaki transform, SN Appl. Sci., 1 (2019), 1–13. https://doi.org/10.1007/s42452-018-0016-9 doi: 10.1007/s42452-018-0016-9
    [50] H. Anaç , M. Merdan, T. Kesemen, Homotopy perturbation Elzaki transform method for obtaining the approximate solutions of the random partial differential equations, Gazi Univ. J. Sci., 35 (2022), 1051–1060. https://doi.org/10.35378/gujs.798705 doi: 10.35378/gujs.798705
    [51] M. Merdan, H. Anaç , Z. Bekiryazıcı, T. Kesemen, Solving of some random partial differential equations by using differential transformation method and Laplace-Padé method, Gümüşhane Ü niv. Fen Bilimleri Derg., 9 (2019), 108–118. https://doi.org/10.17714/gumusfenbil.404332 doi: 10.17714/gumusfenbil.404332
    [52] F. Ayaz, Solutions of the system of differential equations by differential transform method, Appl. Math. Comput., 147 (2004), 547–567. https://doi.org/10.1016/S0096-3003(02)00794-4 doi: 10.1016/S0096-3003(02)00794-4
    [53] J. U. Rahman, D. C. Lu, M. Suleman, J. H. He, M. Ramzan, He-Elzaki method for spatial diffusion of biological population, Fractals, 27 (2019), 1950069. https://doi.org/10.1142/S0218348X19500695 doi: 10.1142/S0218348X19500695
    [54] N. Anjum, J. H. He, Q. T. Ain, D. Tian, Li-He's modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system, Facta Univ. Ser. Mech. Eng., 19 (2021), 601–612. https://doi.org/10.22190/FUME210112025A doi: 10.22190/FUME210112025A
    [55] H. P. Jani, T. R. Singh, Aboodh transform homotopy perturbation method for solving fractional-order Newell-Whitehead-Segel equation, Math. Methods Appl. Sci., 47 (2024), 12028–12043. https://doi.org/10.1002/mma.8886 doi: 10.1002/mma.8886
    [56] M. Ayata, O. Ozkan, A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation, AIMS Math., 5 (2020), 7402–7412. https://doi.org/10.3934/math.2020474 doi: 10.3934/math.2020474
    [57] A. C. Newell, J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38 (1969), 279–303. https://doi.org/10.1017/S0022112069000176 doi: 10.1017/S0022112069000176
    [58] U. Bektaş, H. Anaç , A hybrid method to solve a fractional-order Newell-Whitehead-Segel equation, Bound. Value Probl., 2024 (2024), 38. https://doi.org/10.1186/s13661-023-01795-2 doi: 10.1186/s13661-023-01795-2
    [59] A. Prakash, M. Goyal, S. Gupta, Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation, Nonlinear Eng., 8 (2019), 164–171. https://doi.org/10.1515/nleng-2018-0001 doi: 10.1515/nleng-2018-0001
    [60] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [61] S. Qureshi, N. A. Rangaig, D. Baleanu, New numerical aspects of Caputo-Fabrizio fractional derivative operator, Mathematics, 7 (2019), 1–14. https://doi.org/10.3390/math7040374 doi: 10.3390/math7040374
    [62] K. L. Wang, S. W. Yao, Numerical method for fractional Zakharov-Kuznetsov equations with He's fractional derivative, Thermal Sci., 23 (2019), 2163–2170. https://doi.org/10.2298/TSCI1904163W doi: 10.2298/TSCI1904163W
    [63] M. A. Hussein, Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator, Baghdad Sci. J., 21 (2024), 1044–1054. https://doi.org/10.21123/bsj.2023.7310 doi: 10.21123/bsj.2023.7310
    [64] D. Kumar, J. Singh, D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642–5653. https://doi.org/10.1002/mma.4414 doi: 10.1002/mma.4414
    [65] P. Veeresha, D. G. Prakasha, H. M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Math. Sci., 13 (2019), 115–128. https://doi.org/10.1007/s40096-019-0284-6 doi: 10.1007/s40096-019-0284-6
    [66] Á. A. Magreñán, A new tool to study real dynamics: the convergence plane, Appl. Math. Comput., 248 (2014), 215–224. https://doi.org/10.1016/j.amc.2014.09.061 doi: 10.1016/j.amc.2014.09.061
    [67] F. Haroon, S. Mukhtar, R. Shah, Fractional view analysis of Fornberg-Whitham equations by using Elzaki transform, Symmetry, 14 (2022), 1–16. https://doi.org/10.3390/sym14102118 doi: 10.3390/sym14102118
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(417) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog