Citation: Zeliha Korpinar, Mustafa Inc, Dumitru Baleanu. On the fractional model of Fokker-Planck equations with two different operator[J]. AIMS Mathematics, 2020, 5(1): 236-248. doi: 10.3934/math.2020015
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[2] | I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999. |
[3] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. |
[4] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993. |
[5] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. |
[6] | J. Losada, J. J. Nieto, Properties of the new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-92. |
[7] | A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453. |
[8] | A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos, Solitons and Fractals, 123 (2019), 320-337. doi: 10.1016/j.chaos.2019.04.020 |
[9] | F. Tchier, M. Inc, Z. S. Korpinar, et al. Solution of the time fractional reaction-diffusion equations with residual power series method, Adv. Mech. Eng., 8 (2016), 1-10. |
[10] | A. I. Aliyu, M. Inc, A. Yusuf, et al. A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana-Baleanu fractional derivatives, Chaos, Solitons and Fractals, 116 (2018), 268-277. |
[11] | R. T. Alqahtani, Fixed-point theorem for Caputo-Fabrizio fractional Nagumo equation with nonlinear diffusion and convection, J. Nonlinear Sci. Appl., 9 (2016), 1991-1999. doi: 10.22436/jnsa.009.05.05 |
[12] | M. Inc, Z. S. Korpinar, M. M. Al Qurashi, et al. Anew method for approximate solution of some nonlinear equations: Residual power series method, Adv. Mech. Eng., 8 (2016), 1-7. |
[13] | Z. Korpinar, On numerical solutions for the Caputo-Fabrizio fractional heat-like equation, Therm. Sci., 22 (2018), S87-S95. |
[14] | M. S. Mohamed, K. A. Gepreel, F. A. Al-Malki, et al. Approximate solutions of the generalized Abel's integral equations using the extension Khan's homotopy analysis transformation method, J. Appl. Math., 2015 (2015), 357861. |
[15] | V. G. Gupta, P. Kumar, Approximate solutions of fractional linear and nonlinear differential equations using Laplace homotopy analysis method, Int. J. Nonlinear Sci., 19 (2015), 113-120. |
[16] | M. Dehghan, J. Manafian, A. Saadatmandi, The solution of the linear fractional partial differential equations using the homotopy analysis method, Zeitschrift für Naturforschung-A, 65 (2010), 935-949. |
[17] | H. Xu, J. Cang, Analysis of a time fractional wave-like equation with the homotopy analysis method, Phys. Lett. A, 372 (2008), 1250-1255. doi: 10.1016/j.physleta.2007.09.039 |
[18] | H. Jafari, S. Das, H. Tajadodi, Solving a multi-order fractional differential equation using homotopy analysis method, Journal of King Saud University-Science, 23 (2011), 151-155. doi: 10.1016/j.jksus.2010.06.023 |
[19] | K. Diethelm, N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput., 154 (2004), 621-640. |
[20] | E. F. Goufo, M. K. P.Doungmo, J. N. Mwambakana, Duplication in a model of rock fracture with fractional derivative without singular kernel, Open Math., 13 (2015), 839-846. |
[21] | V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martnez, et al. Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equ-NY, 2016 (2016), 164. |
[22] | A. Prakash, H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM, Chaos, Solitons and Fractals, 105 (2017), 99-110. doi: 10.1016/j.chaos.2017.10.003 |
[23] | M. Magdziarz, A. Weron, K.Weron, Fractional Fokker-Planck dynamics: stochastic representation and computer simulation, Phys. Rev. E, 75 (2007), 016708. |
[24] | M. Magdziarz, A.Weron, Competition between subdiffusion and Levy flights: a Monte Carlo approach, Phys. Rev. E, 75 (2007), 056702. |
[25] | M. Magdziarz, Stochastic representation of subdiffusion processes with time-dependent drift, Stoch. Proc. Appl., 119 (2009), 3238-3252. doi: 10.1016/j.spa.2009.05.006 |
[26] | L. Yan, Numerical solutions of fractional Fokker-Planck equations using iterative Laplace transform method, Abstr. Appl. Anal., 2013 (2013), 1-7. |
[27] | A. Yildirim, Analytical approach to Fokker-Planck equation with space-and time-fractional derivatives by homotopy perturbation method, Journal of King Saud University-Science, 22 (2010), 257-264. doi: 10.1016/j.jksus.2010.05.008 |
[28] | S. Kumar, Numerical computation of time-fractional Fokker- Planck equation arising in solid state physics and circuit theory, Zeitschrift fur Naturforschung, 68 (2013), 777-784. doi: 10.5560/zna.2013-0057 |
[29] | Z. Odibat, S. Momani, Numerical solution of Fokker-Planck equation with space and time-fractional derivatives, Phys. Lett. A, 369 (2007), 349-358. doi: 10.1016/j.physleta.2007.05.002 |
[30] | G. Harrison, Numerical solution of the Fokker-Planck equation using moving finite elements, Numer. Meth. Part. D. E., 4 (1988), 219-232. doi: 10.1002/num.1690040305 |
[31] | J. Yao, A. Kumar, S. Kumar, A fractional model to describe the Brownian motion of particles and its analytical solution, Adv. Mech. Eng., 7 (2015), 1-11. |
[32] | T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations, Eur. Phys. J. D, 73 (2019), 203. |
[33] | T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space, Int. J. Geom. Methods M., 16 (2019), 1950117. |
[34] | T. Körpınar, R. C. Demirkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi-Riemannian manifold, J. Mod. Optic., 66 (2019), 857-867. doi: 10.1080/09500340.2019.1579930 |