Research article Special Issues

Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator

  • Received: 02 April 2022 Revised: 08 June 2022 Accepted: 13 June 2022 Published: 30 June 2022
  • MSC : 46S40, 47H10, 54H25

  • Swift-Hohenberg equations are frequently used to model the biological, physical and chemical processes that lead to pattern generation, and they can realistically represent the findings. This study evaluates the Elzaki Adomian decomposition method (EADM), which integrates a semi-analytical approach using a novel hybridized fuzzy integral transform and the Adomian decomposition method. Moreover, we employ this strategy to address the fractional-order Swift-Hohenberg model (SHM) assuming g$ {\bf H} $-differentiability by utilizing different initial requirements. The Elzaki transform is used to illustrate certain characteristics of the fuzzy Atangana-Baleanu operator in the Caputo framework. Furthermore, we determined the generic framework and analytical solutions by successfully testing cases in the series form of the systems under consideration. Using the synthesized strategy, we construct the approximate outcomes of the SHM with visualizations of the initial value issues by incorporating the fuzzy factor $ \varpi\in[0, 1] $ which encompasses the varying fractional values. Finally, the EADM is predicted to be effective and precise in generating the analytical results for dynamical fuzzy fractional partial differential equations that emerge in scientific disciplines.

    Citation: Saima Rashid, Sobia Sultana, Bushra Kanwal, Fahd Jarad, Aasma Khalid. Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator[J]. AIMS Mathematics, 2022, 7(9): 16067-16101. doi: 10.3934/math.2022880

    Related Papers:

  • Swift-Hohenberg equations are frequently used to model the biological, physical and chemical processes that lead to pattern generation, and they can realistically represent the findings. This study evaluates the Elzaki Adomian decomposition method (EADM), which integrates a semi-analytical approach using a novel hybridized fuzzy integral transform and the Adomian decomposition method. Moreover, we employ this strategy to address the fractional-order Swift-Hohenberg model (SHM) assuming g$ {\bf H} $-differentiability by utilizing different initial requirements. The Elzaki transform is used to illustrate certain characteristics of the fuzzy Atangana-Baleanu operator in the Caputo framework. Furthermore, we determined the generic framework and analytical solutions by successfully testing cases in the series form of the systems under consideration. Using the synthesized strategy, we construct the approximate outcomes of the SHM with visualizations of the initial value issues by incorporating the fuzzy factor $ \varpi\in[0, 1] $ which encompasses the varying fractional values. Finally, the EADM is predicted to be effective and precise in generating the analytical results for dynamical fuzzy fractional partial differential equations that emerge in scientific disciplines.



    加载中


    [1] I. Podlubny, Fractional differential equations, Lightning Source Inc, 1998.
    [2] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci., 2021, https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
    [3] H. Zhang, J. Cheng, H. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos Soliton. Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
    [4] C. Wang, H. Zhang, H. Zhang, W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2021), 14000–14012. https://doi.org/10.3934/math.2021809 doi: 10.3934/math.2021809
    [5] F. Jin, Z. S. Qian, Y. M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [6] H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Caocd, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simulat., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
    [7] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [8] S. Narges Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multi-step methods for singular fractional $q$-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [9] Y. Cheng, H. Zhang, W. Zhang, H. Zhang, Novel algebraic criteria on global Mittag-Leffler synchronization of FOINNs with the Caputo derivative and delay, J. Appl. Math. Comput., 2021. https://doi.org/10.1007/s12190-021-01672-0 doi: 10.1007/s12190-021-01672-0
    [10] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [11] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical $\hbar$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
    [12] F. Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [13] S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted $n$-fold type inequalities via discrete generalized ${\rm{\hat h}}$-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
    [14] S. A. Iqbal, M. G. Hafez, Y. M. Chu, C. Park, Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative, J. Appl. Anal. Comput., 12 (2022), 770–789. https://doi.org/10.11948/20210324 doi: 10.11948/20210324
    [15] D. Kumar, J. Singh, D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-leffler type kernel, Physica A, 492 (2018), 155–167. https://doi.org/10.1016/j.physa.2017.10.002 doi: 10.1016/j.physa.2017.10.002
    [16] D. Kumar, J. Singh, K. Tanwar, D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and mittag-leffler laws, Int. J. Heat. Mass. Tran., 138 (2019), 1222–1227. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.094 doi: 10.1016/j.ijheatmasstransfer.2019.04.094
    [17] S. Rashid, S. Sultana, Z. Hammouch, F. Jarad, Y. S. Hamed, Novel aspects of discrete dynamical type inequalities within fractional operators having generalized h-discrete Mittag-Leffler kernels and application, Chaos Soliton. Fract., 151 (2021), 111204. https://doi.org/10.1016/j.chaos.2021.111204 doi: 10.1016/j.chaos.2021.111204
    [18] W. M. Qian, H. H. Chu, M. K. Wang, Y. M. Chu, Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means, J. Math. Inequal., 16 (2022), 127–141. https://doi.org/10.7153/jmi-2022-16-10 doi: 10.7153/jmi-2022-16-10
    [19] T. H. Zhao, H. H. Chu, Y. M. Chu, Optimal Lehmer mean bounds for the $n$th power-type Toader mean of $n = -1, 1, 3$, J. Math. Inequal., 16 (2022), 157–168. https://doi.org/10.7153/jmi-2022-16-12 doi: 10.7153/jmi-2022-16-12
    [20] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 144. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
    [21] M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2022), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
    [22] Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2022), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
    [23] T. H. Zhao, M. Ijaz Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7310 doi: 10.1002/mma.7310
    [24] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [25] N. V. Hoa, H. Vu, T. M. Duc, Fuzzy fractional differential equations under Caputo Katugampola fractional derivative approach, Fuzzy Set. Syst., 375 (2019), 70–99. https://doi.org/10.1016/j.fss.2018.08.001 doi: 10.1016/j.fss.2018.08.001
    [26] N. V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear Sci., 22 (2015), 1134–1157. https://doi.org/10.1016/j.cnsns.2014.08.006 doi: 10.1016/j.cnsns.2014.08.006
    [27] S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE T. Syst. Man Cy., 2 (1972), 30–34. https://doi.org/10.1142/9789814261302_0012 doi: 10.1142/9789814261302_0012
    [28] D. Dubois, H. Prade, Towards fuzzy differential calculus part 3: Differentiation, Fuzzy Set. Syst., 8 (1982), 225–233. https://doi.org/10.1016/S0165-0114(82)80001-8 doi: 10.1016/S0165-0114(82)80001-8
    [29] K. M. Saad, A reliable analytical algorithm for space–time fractional cubic isothermal autocatalytic chemical system, Pramana, 91 (2018), 51. https://doi.org/10.1007/s12043-018-1620-3 doi: 10.1007/s12043-018-1620-3
    [30] K. M. Saad, J. F. Gómez-Aguilar, Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel, Physica A, 509 (2018), 703–7116. https://doi.org/10.1016/j.physa.2018.05.137 doi: 10.1016/j.physa.2018.05.137
    [31] O. A. Arqub, M. Al-Smadi, S. Momani, T. Hayat, Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems, Soft Comput., 21 (2017), 7191–7206. https://doi.org/10.1007/s00500-016-2262-3 doi: 10.1007/s00500-016-2262-3
    [32] O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. Appl., 28 (2017), 1591–1610. https://doi.org/10.1007/s00521-015-2110-x doi: 10.1007/s00521-015-2110-x
    [33] S. Rashid, F. Jarad, K. M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative, AIMS Math., 6 (2021), 10920–10946. https://doi.org/10.3934/math.2021635 doi: 10.3934/math.2021635
    [34] A. Kandel, W. J. Byatt, Fuzzy differential equations, In: Proceedings of international conference cybernetics and society, 1978, 1213–1216.
    [35] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. Theor., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [36] T. Allahviranloo, A. M. Kermani, Numerical methods for fuzzy partial differential equations under new defini-tion for derivative, Iran. J. Fuzzy Syst., 7 (2010), 33–50.
    [37] O. A. Arqub, M. Al-Smadi, S. Momani, T. Hayat, Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems, Soft Comput., 21 (2017), 7191–7206. https://doi.org/10.1007/s00500-016-2262-3 doi: 10.1007/s00500-016-2262-3
    [38] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [39] J. B. Swift, P. C. Hohenberg, Hydrodynamic fuctuations at the convective instability, Phys. Rev. A, 15 (1977), 319. https://doi.org/10.1103/PhysRevA.15.319 doi: 10.1103/PhysRevA.15.319
    [40] P. Hohenberg, J. B. Swift, Effects of additive noise at the onset of Rayleigh-Benard convection, Phys. Rev. A, 46 (1992), 4773–4785. https://doi.org/10.1103/PhysRevA.46.4773 doi: 10.1103/PhysRevA.46.4773
    [41] L. Lega, J. V. Moloney, A. C. Newell, Swift-Hohenberg equation for lasers, Phys. Rev. Lett., 73 (1994), 2978–2981. https://doi.org/10.1103/PhysRevLett.73.2978 doi: 10.1103/PhysRevLett.73.2978
    [42] M. C. Cross, P. C. Hohenberg, Pattern formulation outside of equiblirium, Rev. Mod. Phys., 65 (1993), 851–1112. https://doi.org/10.1103/RevModPhys.65.851 doi: 10.1103/RevModPhys.65.851
    [43] W. Li, Y. Pang, An iterative method for time-fractional Swift-Hohenberg equation, Adv. Math. Phys., 2018 (2018), 2405432. https://doi.org/10.1155/2018/2405432 doi: 10.1155/2018/2405432
    [44] N. A. Khan, N. U. Khan, M. Ayaz, A. Mahmood, Analytical methods for solving the time-fractional Swif-Hohenberg equation, Comput. Math. Appl., 61 (2011), 2182–2185. https://doi.org/10.1016/j.camwa.2010.09.009 doi: 10.1016/j.camwa.2010.09.009
    [45] K. Vishal, S. Kumar, S. Das, Application of homotopy analysis method for fractional Swif Hohenberg equation-revisited, Appl. Math. Model., 36 (2012), 3630–3637. https://doi.org/10.1016/j.apm.2011.10.001 doi: 10.1016/j.apm.2011.10.001
    [46] K. Vishal, S. Das, S. H. Ong, P. Ghosh, On the solutions of fractional Swif Hohenberg equation with dispersion, Appl. Math. Comput., 219 (2013), 5792–5801. https://doi.org/10.1016/j.amc.2012.12.032 doi: 10.1016/j.amc.2012.12.032
    [47] M. Merdan, A numeric-analytic method for time-fractional Swif-Hohenberg equation with modifed Riemann-Liouville derivative, Appl. Math. Model., 37 (2013), 4224–4231. https://doi.org/10.1016/j.apm.2012.09.003 doi: 10.1016/j.apm.2012.09.003
    [48] S. Das, K. Vishal, Homotopy analysis method for fractional Swift-Hohenberg equation, In: Advances in the homotopy analysis method, 2014,291–308. https://doi.org/10.1142/9789814551250_0007
    [49] T. M. Elzaki, The new integral transform Elzaki transform, Global J. Pure Appl. Math., 7 (2011), 57–64.
    [50] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 doi: 10.1016/0022-247X(88)90170-9
    [51] S. Rashid, R. Ashraf, E. Bonyah, On analytical solution of time-fractional biological population model by means of generalized integral transform with their uniqueness and convergence analysis, Adv. Nonlinear Anal. Appl., 2022 (2022), 7021288. https://doi.org/10.1155/2022/7021288 doi: 10.1155/2022/7021288
    [52] S. Rashid, R. Ashraf, F. S. Bayones, A novel treatment of fuzzy fractional Swift-Hohenberg equation for a hybrid transform within the fractional derivative operator, Fractal Fract., 5 (2021), 209. https://doi.org/10.3390/fractalfract5040209 doi: 10.3390/fractalfract5040209
    [53] T. Allahviranloo, Fuzzy fractional differential operators and equations: Fuzzy fractional differential equations, Springer Nature, 2021.
    [54] H. J. Zimmermann, Fuzzy set theory and its applications, Dordrecht: Kluwer Academic Publishers, 1991.
    [55] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
    [56] S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu, P. Agarwal, On analytical aolutions of the fractional differential equation with uncertainty: Application to the Basset problem, Entropy, 7 (2015), 885–902. https://doi.org/10.3390/e17020885 doi: 10.3390/e17020885
    [57] T. Allahviranloo, M. B. Ahmadi, Fuzzy lapalce transform, Soft Comput., 14 (2010), 235–243. https://doi.org/10.1007/s00500-008-0397-6 doi: 10.1007/s00500-008-0397-6
    [58] M. Yavuz, T. Abdeljawad, Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel, Adv. Differ. Equ., 2020 (2020), 367. https://doi.org/10.1186/s13662-020-02828-1 doi: 10.1186/s13662-020-02828-1
    [59] R. Henstock, Theory of integration, Butterworths, 1963.
    [60] Z. T. Gong, L. L. Wang, The Henstock-Stieltjes integral for fuzzy-number-valued functions, Inform. Sciences, 188 (2012), 276–297. https://doi.org/10.1016/j.ins.2011.11.024 doi: 10.1016/j.ins.2011.11.024
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1298) PDF downloads(116) Cited by(2)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog