Research article Special Issues

Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator

  • Swift-Hohenberg equations are frequently used to model the biological, physical and chemical processes that lead to pattern generation, and they can realistically represent the findings. This study evaluates the Elzaki Adomian decomposition method (EADM), which integrates a semi-analytical approach using a novel hybridized fuzzy integral transform and the Adomian decomposition method. Moreover, we employ this strategy to address the fractional-order Swift-Hohenberg model (SHM) assuming gH-differentiability by utilizing different initial requirements. The Elzaki transform is used to illustrate certain characteristics of the fuzzy Atangana-Baleanu operator in the Caputo framework. Furthermore, we determined the generic framework and analytical solutions by successfully testing cases in the series form of the systems under consideration. Using the synthesized strategy, we construct the approximate outcomes of the SHM with visualizations of the initial value issues by incorporating the fuzzy factor ϖ[0,1] which encompasses the varying fractional values. Finally, the EADM is predicted to be effective and precise in generating the analytical results for dynamical fuzzy fractional partial differential equations that emerge in scientific disciplines.

    Citation: Saima Rashid, Sobia Sultana, Bushra Kanwal, Fahd Jarad, Aasma Khalid. Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator[J]. AIMS Mathematics, 2022, 7(9): 16067-16101. doi: 10.3934/math.2022880

    Related Papers:

    [1] M. R. Irshad, S. Aswathy, R. Maya, Amer I. Al-Omari, Ghadah Alomani . A flexible model for bounded data with bathtub shaped hazard rate function and applications. AIMS Mathematics, 2024, 9(9): 24810-24831. doi: 10.3934/math.20241208
    [2] Doaa Basalamah, Bader Alruwaili . The weighted Lindley exponential distribution and its related properties. AIMS Mathematics, 2023, 8(10): 24984-24998. doi: 10.3934/math.20231275
    [3] Tabassum Naz Sindhu, Zawar Hussain, Naif Alotaibi, Taseer Muhammad . Estimation method of mixture distribution and modeling of COVID-19 pandemic. AIMS Mathematics, 2022, 7(6): 9926-9956. doi: 10.3934/math.2022554
    [4] M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857
    [5] Rashad M. EL-Sagheer, Mohamed S. Eliwa, Khaled M. Alqahtani, Mahmoud El-Morshedy . Bayesian and non-Bayesian inferential approaches under lower-recorded data with application to model COVID-19 data. AIMS Mathematics, 2022, 7(9): 15965-15981. doi: 10.3934/math.2022873
    [6] Fiaz Ahmad Bhatti, Azeem Ali, G. G. Hamedani, Mustafa Ç. Korkmaz, Munir Ahmad . The unit generalized log Burr XII distribution: properties and application. AIMS Mathematics, 2021, 6(9): 10222-10252. doi: 10.3934/math.2021592
    [7] Ahmed M. Gemeay, Najwan Alsadat, Christophe Chesneau, Mohammed Elgarhy . Power unit inverse Lindley distribution with different measures of uncertainty, estimation and applications. AIMS Mathematics, 2024, 9(8): 20976-21024. doi: 10.3934/math.20241021
    [8] Refah Alotaibi, Hassan Okasha, Hoda Rezk, Abdullah M. Almarashi, Mazen Nassar . On a new flexible Lomax distribution: statistical properties and estimation procedures with applications to engineering and medical data. AIMS Mathematics, 2021, 6(12): 13976-13999. doi: 10.3934/math.2021808
    [9] Emrah Altun, Mustafa Ç. Korkmaz, M. El-Morshedy, M. S. Eliwa . The extended gamma distribution with regression model and applications. AIMS Mathematics, 2021, 6(3): 2418-2439. doi: 10.3934/math.2021147
    [10] Ayed. R. A. Alanzi, Muhammad Imran, M. H. Tahir, Christophe Chesneau, Farrukh Jamal, Saima Shakoor, Waqas Sami . Simulation analysis, properties and applications on a new Burr XII model based on the Bell-X functionalities. AIMS Mathematics, 2023, 8(3): 6970-7004. doi: 10.3934/math.2023352
  • Swift-Hohenberg equations are frequently used to model the biological, physical and chemical processes that lead to pattern generation, and they can realistically represent the findings. This study evaluates the Elzaki Adomian decomposition method (EADM), which integrates a semi-analytical approach using a novel hybridized fuzzy integral transform and the Adomian decomposition method. Moreover, we employ this strategy to address the fractional-order Swift-Hohenberg model (SHM) assuming gH-differentiability by utilizing different initial requirements. The Elzaki transform is used to illustrate certain characteristics of the fuzzy Atangana-Baleanu operator in the Caputo framework. Furthermore, we determined the generic framework and analytical solutions by successfully testing cases in the series form of the systems under consideration. Using the synthesized strategy, we construct the approximate outcomes of the SHM with visualizations of the initial value issues by incorporating the fuzzy factor ϖ[0,1] which encompasses the varying fractional values. Finally, the EADM is predicted to be effective and precise in generating the analytical results for dynamical fuzzy fractional partial differential equations that emerge in scientific disciplines.



    Recently, some researchers in statistics have been interested in generating new flexible statistical models based on different techniques such as the weight distributions which are commonly used in many fields of life situations such as sciences, ecology, biostatistics, medicine, engineering, pharmacy and environment and so on.

    The concept of weighted distribution is suggested by [15] to study how verification methods can affect the form of the distribution of recorded observations. Later, the weighted distributions are unified and formulated by [31] in general terms in connection with modeling statistical data.

    Suppose X is a non-negative random variable with a probability density function (pdf) f(x). Let W(x) be a non negative weight function, then the probability density function of the weighted random variable Xw is given by:

    fw(x)=W(x)f(x)E(W(x)). (1.1)

    If the weight function has the form W(x)=xλ, the resulting distribution is known as a size biased distribution of order λ with pdf given by:

    fλ(x)=xλf(x)E(Xλ). (1.2)

    If λ = or 2, the yielded distributions are known as the length biased and area biased distributions, respectively.

    For example, the length-biased Suja distribution is proposed by [5] as a generalization of the Suja distribution. The size biased Ishita distribution is offered by [6] as a new modification of the Ishita distribution. The Marshall-Olkin length-biased exponential distribution is suggested by [18]. The length-biased weighted generalized Rayleigh distribution with its properties is proposed by [2]. The weighted Lomax distribution is introduced by [23]. Other types of distributions are also suggested based on other procedures as [8] for the exponentiated new Weibull-Pareto distribution. The Topp-Leone Mukherjee-Islam distribution is offered by [7]. Also, see [27,16,17,26].

    To the best of our knowledge, the use of the weighted method to extend the generalized Quasi Lindley distribution introduced by [9] is still unexplored in the literature. In this study, the weighted generalized Quasi Lindley distribution is proposed. Indeed, the importance of the suggestion of the WGQLD arises from the fact it is a modification of the well known Quasi Lindley distribution which is considered by many researchers in different life situations.

    The layout of this paper is organized as follows. Section 2 concerns with the pdf and cumulative distribution function (cdf) of the WGQLD and its shapes. Moment generating function and moments includes the rth moment, variance, the coefficient of skewness, kurtosis, and variation are presented in Section 3 theoretically and supported by some simulations. The distribution of order statistics, median deviations and harmonic mean are presented in Section 4. The stochastic ordering, reliability, hazard, reversed hazard rate and odds functions are given in Section 5. Bonferroni and Lorenz curves as well as the Gini index are provided in Section 6. In Section 7, different methods of estimation for the distribution parameters are discussed including maximum likelihood, maximum product of spacing's, ordinary least squares, weighted least squares, Cramer-von-Mises, and Anderson-Darling methods. A simulation study is conducted to compare the performance of the proposed estimators in Section 8. Illustrative examples of real data applications are given in Section 9. The paper is concluded with some suggestions for future works in Section 10.

    This section introduces the pdf and cdf of the WGQLD along with the shapes of the model. The probability density function of the generalized Quasi Lindley distribution is given by:

    fGQLD(x;θ,α)=θ2(θ2x36+αθx2+α2x)(α+1)2eθx; x0, α>1, θ0, (2.1)

    and the corresponding cdf is:

    FGQLD(x;θ,α)=1(θ3x3+3(2α+1)θ2x2+6(α+1)2(θx+1))6(α+1)2eθx. (2.2)

    With reference to Eq 1.1, and in this work without loss of generality we considered the weight function as W(x)=x given that the mean of the GQLD is E(X)=2(2+α)θ(1+α). Hence, the weighted generalized Quasi Lindley distribution can be obtained by substituting fGQLD(x;θ,α), E(X) and W(x) in Eq 1.1 to get:

    fWGQLD(x;θ,α)=θ32(α2+3α+2)(θ2x46+αθx3+α2x2)eθx; x0, α>1, θ0. (2.3)

    Figures 1 and 2 demonstrate the graphs of the pdf of the WGQLD for different values of θ and α. Also, Figures 3 and 4 show various curves of the cdf of WGQLD for selected distribution parameters.

    Figure 1.  Plots of the WGQLD probability density function with different parameters values.
    Figure 2.  Plots of the WGQLD probability density function with different parameters values.
    Figure 3.  The cdf of the WGQLD with different parameters values.
    Figure 4.  The cdf of the WGQLD with different parameters values.

    Based on Figures 1 and 2, it can be observed that the WGQLD is a unimodel and positively skewed. Also, it is approximately symmetric as in Figure 2 when θ=1 for some parameters. The curve of the distribution function is more flat for α=1,θ=0.25 and when α=θ=1. than other values.

    The corresponding cdf equation of the WGQLD is given by

    FWGQLD(x;θ,α)=124+6α2[2+xθ(2+xθ)]+6α[6+xθ(6+xθ(3+xθ))]+xθ[24+xθ(12+xθ(4+xθ))]12(1+α)(2+α)eθx. (2.4)

    Figure 3 reveals that the cdf plots are approach 1 when θ=3 (a) faster than that of α=1 (b). In comparing Figure 3(b) with Figure 4(b), it can be observed that the cdf plots are more spread with smaller values of θ. However, the same thing can be concluded in comparing Figure 3(a) with Figure 4(a).

    Theorem 1. : Let XfWGQLD(x,θ,α), then the rth moment of X about the origin is:

    E(Xr)=(r2+6(1+α)(2+α)+r(7+6α))Γ(3+r)12θr(2+3α+α2),α>1,θ>0, r=1,2,3... (3.1)

    Proof. : The proof is direct by using E(Xr)=0xrf(x,θ,α)dx as

    E(Xr)=0xrθ32(α2+3α+2)(α2x2+αθx3+θ2x46)eθxdx=θ32(α2+3α+2)0(xrα2x2eθx+xrαθx3eθx+xrθ2x46eθx)dx=θ32(α2+3α+2)(0xrα2x2eθxdx+0xrαθx3eθxdx+0xrθ2x46eθxdx)=θ32(α2+3α+2)(0xr+2α2eθxdx+0xr+3αθeθxdx+016xr+4θ2eθxdx)=θ32(α2+3α+2)(α2(r+2)!θr+3+αθ(r+3)!θr+4+θ2(r+3)!6θr+5)=θ32(α2+3α+2)(α2(r+2)!θr+3+α(r+3)(r+2)!θr+3+(r+4)(r+3)(r+2)!6θr+3)=(r+2)!12θr(α2+3α+2)(6α2+6α(r+3)+(r+4)(r+3))=[r2+6(1+α)(2+α)+r(7+6α)]Γ[3+r]12θr(2+3α+α2).

    Based on Eq 7, it is simple to have the first, second, third and fourth moments of the WGQLD, respectively, as

    E(X)=6(α+1)(α+2)+6α+82(α2+3α+2)θ=3α(α+4)+10(α+1)(α+2)θ, (3.2)
    E(X2)=2(2(6α+7)+6(α+1)(α+2)+4)(α2+3α+2)θ2=12(α(α+5)+5)(α+1)(α+2)θ2, (3.3)
    E(X3)=10(3(6α+7)+6(α+1)(α+2)+9)(α2+3α+2)θ3=60(α(α+6)+7)(α+1)(α+2)θ3, (3.4)
    E(X4)=60(4(6α+7)+6(α+1)(α+2)+16)(α2+3α+2)θ4=120(3α(α+7)+28)(α+1)(α+2)θ4. (3.5)

    Therefore, the variance of the WGQLD can be obtained as

    V(X)=E(X2)(E(X))2=3α4+24α3+60α2+60α+20(α+1)2(α+2)2θ2. (3.6)

    The distribution shape analysis can be performed by studying the coefficient of skewness, coefficient of kurtosis, and coefficient of variation. For the WGQLD, these coefficients, respectively, are given by:

    SKWGQLD=2(3α6+36α5+150α4+306α3+330α2+180α+40)(α+1)(α+2)(α+1)(α+2)(3α4+24α3+60α2+60α+20)32, (3.7)
    KuWGQLD=315α8+240α7+1496α6+4968α5+9776α4+11760α3+8480α2+3360α+560(3α4+24α3+60α2+60α+20)2, (3.8)
    CVWGQLD=(α+1)(α+2)3α4+24α3+60α2+60α+20(3α2+12α+10)(α+1)(α+2). (3.9)

    It is of interest to note here that the coefficient of skewness, coefficient of variation and coefficient of kurtosis are free of θ. Table (1) presents some values of the mean, standard deviation, coefficient of variation, coefficient of skewness and coefficient of kurtosis of WGQLD for various values of the parameters α and θ.

    Table 1.  The mean, standard deviation, coefficients of variation, skewness and kurtosis for the WGQLD(θ, α) with different values of α and θ.
    μWGQLD σWGQLD SKWGQLD KuWGQLD CVWGQLD
    α θ=1.25
    0.1 3.889177 1.786969 0.897106 4.205054 0.459472
    0.2 3.793939 1.782395 0.903213 4.217285 0.469801
    0.3 3.711037 1.776240 0.910968 4.233681 0.478637
    0.4 3.638095 1.769174 0.919440 4.252427 0.486291
    0.5 3.573333 1.761615 0.928126 4.272400 0.492989
    0.6 3.515385 1.753829 0.936749 4.292896 0.498901
    0.7 3.463181 1.745987 0.945154 4.313464 0.504157
    0.8 3.415873 1.738199 0.953260 4.333820 0.508859
    0.9 3.372777 1.730537 0.961027 4.353780 0.513090
    1 3.333333 1.723046 0.968437 4.373230 0.516914
    1.1 3.297081 1.715755 0.975492 4.392101 0.520386
    1.2 3.263636 1.708680 0.982196 4.410356 0.523551
    1.3 3.232675 1.701828 0.988563 4.427977 0.526446
    1.4 3.203922 1.695202 0.994608 4.444961 0.529102
    1.5 3.177143 1.688801 1.000346 4.461313 0.531547
    θ α=2
    0.1 38.333333 20.749833 1.025012 4.534152 0.5413
    0.2 19.166667 10.374916 1.025012 4.534152 0.5413
    0.3 12.777778 6.916611 1.025012 4.534152 0.5413
    0.4 9.583333 5.187458 1.025012 4.534152 0.5413
    0.5 7.666667 4.149967 1.025012 4.534152 0.5413
    0.6 6.388889 3.458305 1.025012 4.534152 0.5413
    0.7 5.476190 2.964262 1.025012 4.534152 0.5413
    0.8 4.791667 2.593729 1.025012 4.534152 0.5413
    0.9 4.259259 2.305537 1.025012 4.534152 0.5413
    1 3.833333 2.074983 1.025012 4.534152 0.5413
    1.1 3.484848 1.886348 1.025012 4.534152 0.5413
    1.2 3.194444 1.729153 1.025012 4.534152 0.5413
    1.3 2.948718 1.596141 1.025012 4.534152 0.5413
    1.4 2.738095 1.482131 1.025012 4.534152 0.5413
    1.5 2.555556 1.383322 1.025012 4.534152 0.5413

     | Show Table
    DownLoad: CSV

    It can be noted that the mean and the standard deviation are decreasing when values of α and θ are increasing for fixed values of θ and α, respectively. The results of simulation emphasize that the coefficient of skewness, coefficient of variation and coefficient of kurtosis don't depend on θ and increasing when α values are increasing.

    The moment generating function (MGF) of the WGQLD is given in the following theorem.

    Theorem 2. : Let XfWGQLD(x,θ,α), then the MGF of X about the origin is:

    M(t)=θ3(θ+αθtα)((2+α)θtα)(2+3α+α2)(θt)5. (3.10)

    Proof. : To prove the MGF of the WGQLD, let

    E(etx)=0etxθ32(α2+3α+2)(α2x2+αθx3+θ2x46)eθxdx=θ32(α2+3α+2)(0α2x2e(θt)xdx+0αθx3e(θt)xdx+0θ2x46e(θt)xdx)=θ32(α2+3α+2)(α22!(θt)3+αθ3!(θt)4+θ24!6(θt)5)=2θ32(α2+3α+2)(α2(θt)3+3αθ(θt)4+2θ2(θt)5)=θ3(α2+3α+2)(θt)3(α2+3αθ(θt)+2θ2(θt)2)=θ3(α2+3α+2)(θt)3(t2α22tθα2+θ2α23tαθ+3αθ2+2θ2(θt)2)=θ3(αθαt+θ)((α+2)θαt)(α2+3α+2)(θt)5.

    Let X1,X2,,Xm be a random sample of size m from a distribution with pdf f(x) and cdf F(x). The pdf of the ith order statistic X(j:m) for j=1,2,,m are defined by [14] as

    f(j:m)(x)=m!(j1)(mj)F(x)]j[1F(x)]mjf(x). (4.1)

    Based on Eq (4.1), the pdf of the ith order statistic, X(i:m), from the WGQLD, will be

    f(j:m)(x)=θ3(C+1)j122j2m13jmΓ(m+1)eθxAmj(θ2x46+αθx3+α2x2)(α+1)(α+2)Γ(j)Γ(j+m+1), (4.2)

    where

    A=eθx(12(α+1)(α+2)+θ4x4+2(3α+2)θ3x3+6(α+1)(α+2)θ2x2+12(α+1)(α+2)θx)(α+1)(α+2),

    and

    C=eθx(6α2(θx(θx+2)+2)6α(θx(θx(θx+3)+6)+6)θx(θx(θx(θx+4)+12)+24)24)12(α+1)(α+2).

    Based on Eq (18), the pdf of the minimum and maximum order statistics, respectively, are given by

    f(1:m)(x)=θ3212m31mmeθmx(θ2x46+αθx3+α2x2)[(6α2(θx(θx+2)+2)B)]m1(α2+3α+2)m,

    where B={6α(θx(θx(θx+3)+6)+6)+θx(θx(θx(θx+4)+12)+24)+24}, and

    f(m:m)(x)=θ3meθx(θ2x46+αθx3+α2x2)(eθxD12(α+1)(α+2)+1)m12(α2+3α+2),

    where

    D=6α2(θx(θx+2)+2)6α(θx(θx(θx+3)+6)+6)θx(θx(θx(θx+4)+12)+24)24

    .

    To measure the scatter in the population, the mean deviation about the median denoted by MD(x) can be used, where

    MD(x)=0|xM|f(x)dx=μ2M0xf(x)dx, (4.3)

    where M is the population median. The mean deviation about the median for the WGQL distribution is defined as:

    MD=(6α2(θM(θM(θM+3)+6)+6)6(3α(α+4)+10)eθM+6α(θM(θM(θM(θM+4)+12)+24)+24)+θM(θM(θM(θM(θM+5)+20)+60)+120)+120)6(α+1)(α+2)θeθM. (4.4)

    Let XfWGQLD(x,θ,α), then

    E(1X)=(α+1)2θ2(α2+3α+2).

    Therefore, the harmonic mean of the WGQLD is given by

    HM(θ,α)=2(α2+3α+2)(α+1)2θ. (4.5)

    Table 2 presents some values of the harmonic mean of WGQLD for various values of the parameters θ and α.

    Table 2.  Harmonic mean of the WGQLD for selected values of (α,θ).
    α HM(5,α) α HM(5,α) α HM(5,α) θ HM(θ,2) θ HM(θ,2) θ HM(θ,2)
    1 0.6000 16 0.4235 31 0.4125 1 2.6666 16 0.1666 31 0.0860
    2 0.5333 17 0.4222 32 0.4121 2 1.3333 17 0.1568 32 0.0833
    3 0.5000 18 0.4210 33 0.4117 3 0.8888 18 0.1481 33 0.0808
    4 0.4800 19 0.4200 34 0.4114 4 0.6666 19 0.1403 34 0.0784
    5 0.4666 20 0.4190 35 0.4111 5 0.5333 20 0.1333 35 0.0761
    6 0.4571 21 0.4181 36 0.4108 6 0.4444 21 0.1269 36 0.0740
    7 0.4500 22 0.4173 37 0.4105 7 0.3809 22 0.1212 37 0.0720
    8 0.4444 23 0.4166 38 0.4102 8 0.3333 23 0.1159 38 0.0701
    9 0.4400 24 0.4160 39 0.4100 9 0.2962 24 0.1111 39 0.0683
    10 0.4363 25 0.4153 40 0.4097 10 0.2666 25 0.1066 40 0.0666
    11 0.4333 26 0.4148 41 0.4095 11 0.2424 26 0.1025 41 0.0650
    12 0.4307 27 0.4142 42 0.4093 12 0.2222 27 0.0987 42 0.0634
    13 0.4285 28 0.4137 43 0.4090 13 0.2051 28 0.0952 43 0.0620
    14 0.4266 29 0.4133 44 0.4088 14 0.1904 29 0.0919 44 0.0606
    15 0.4250 30 0.4129 45 0.4086 15 0.1777 30 0.0888 45 0.0592

     | Show Table
    DownLoad: CSV

    Based on Table 2, we can conclude that: the harmonic mean values are decreasing in α when θ=5 and are decreasing in θ when α=2. Also, in general the harmonic mean values when θ<α are larger than the case of θ>α.

    The stochastic ordering is an important tool in finance and reliability theory to evaluate the comparative behaviour of the models or systems. Let the random variables X and Y having the probability density functions, cumulative distribution functions and survival functions f(x),f(y),F(x),F(y),¯F(x)=1F(x), and ¯F(y)=1F(y), respectively, then XY in:

    1. Mean residual life order denoted by XMRLOY, if mX(x)mY(x) for all x,

    2. Hazard rate order denoted by XHROY, if ¯FX(x)/¯FY(x) is decreasing in x0,

    3. Stochastic order denoted by XSOY, if ¯FX(x)≤≤¯FY(x) for all x,

    4. Likelihood ratio order denoted by XLROY, if fx(x)fY(x) is decreasing in x0.

    All these stochastic orders defined above are related to each other and [29] showed the following relation is hold.

    XLROYXHROYXMRLOY.XSoY.

    Theorem 3. : Let the random variables X and Y be independent follow the pdf fX(x,θ,α) and fY(x,μ,ω), respectively. If θ>μ and α>ω, then XLROY,XHROY,XMRLOY and XSOY.

    Proof: Let XfX(x,θ,α), YfY(x,μ,ω), then

    fX(x,θ,α)fY(x,μ,ω)=θ3(θ2x46+αθx3+α2x2)eθx2(α2+3α+2)μ3(μ2x46+ωμx3+ω2x2)eμx2(ω2+3ω+2),

    and

    log(fX(x,θ,α)fY(x,μ,ω))=log(θ3(θ2x46+αθx3+α2x2)eθx2(α2+3α+2)μ3(μ2x46+ωμx3+ω2x2)eμx2(ω2+3ω+2)),=log(θ3(ω2+3ω+2)μ3(α2+3α+2)(θ2x46+αθx3+α2x2μ2x46+ωμx3+ω2x2)exp((μθ)x)),=log(θ3(ω2+3ω+2)μ3(α2+3α+2))+log(θ2x46+αθx3+α2x2μ2x46+ωμx3+ω2x2)+(μθ)x.

    Taking the derivative of the last equation with respect to x yields

    ddxlog(fX(x,θ,α)fY(x,μ,ω))=2θ2x+6αθθ2x2+6αθx+6α22μ2x+6μωμ2x2+6μωx+6ω2+μθ.

    Hence, if θ>μ, α>ω, then ddxlog(fX(x,θ,α)fY(x,μ,ω))<0. Therefore, XLROY, XHROY, XMRLOY and XSOY.

    The corresponding reliability and hazard functions of the WGQLD distribution are given, respectively by:

    RWGQLD(x;θ, α)=1FWGQLD(x;θ, α)=(24+6α2[2+xθ(2+xθ)]+6α[6+xθ(6+xθ(3+xθ))]+xθ[24+xθ(12+xθ(4+xθ))])12(1+α)(2+α)eθx, (5.1)

    and

    HWGQLD(x;θ,α)=fWGQLD(x;θ,α)1FWGQLD(x;θ,α)=θ3(θ2x46+αθx3+α2x2)24+6α2[2+xθ(2+xθ)]+6α[6+xθ(6+xθ(3+xθ))]+xθ[24+xθ(12+xθ(4+xθ))]. (5.2)

    Figure 5, reveals that the reliability of the WGQLD are decreasing while the hazard rate function is increasing for α=1,2,,5. The reversed hazard rate and odds functions for the WGQLD distribution, respectively, are defined as

    RHWGQLD(x;θ,α)=fWGQLD(x;θ,α)FWGQLD(x;θ,α)=θ3x2(θ2x2+6αθx+6α2)12(α+1)(α+2)eθx12(α+1)(α+2)θx(θx(θx(θx+6α+4)+6(α+1)(α+2))+12(α+1)(α+2)),
    Figure 5.  Reliability function (a) and hazard rate function (b) of the WGQLD for various values of θ when α = 1.

    and

    OWGQLD(x;θ,α)=FWGQLD(x;θ,α)1FWGQLD(x;θ,α)=12(α+1)(α+2)eθxθ4x+4θ3x3+12θ2x2+24θx+6αθ3x3+18αθ2x2+36αθx+36α+6α2θ2x2+12α2θx+12α2+241.

    As it is shown in Figure 6, the reversed hazard function is decreasing taking inverse J shape while the odds functions is increasing with J shape.

    Figure 6.  The reversed hazard rate (a) and the odds functions (b) of the WGQLD for various values of θ when α=1.

    Assume that the random variable X is a non-negative with continuous and twice differentiable cumulative distribution function F(x). The Bonferroni curve of the random variable X is defined as

    BC=1pμ(0xf(x)dxqxf(x)dx)=1pμ(μqxf(x)dx), (6.1)

    where q=F1(p) and p(0,1]. The Lorenz curve is defined as

    LC=1μ(0xf(x)dxqxf(x)dx)=1μ(μqxf(x)dx). (6.2)

    The Gini index is given by

    GI=11μ0(1F(x))2dx=1μ0F(x)(1F(x))dx. (6.3)

    Now, for the WGQL distribution, the Bonferroni curve, Lorenz curve and Gini index are given, respectively, as

    BC=(12eqθ(10+3α(4+α))1206α2(6+qθ[6+qθ(3+qθ)])6α(24+qθ(24+qθ[12+qθ(4+qθ)]))qθ(120+qθ[60+qθ(20+qθ(5+qθ))]))12p(10+3α(4+α))eqθ, (6.4)
    LC=(120+12eqθ(10+3α(4+α))6α2(6+qθ(6+qθ(3+qθ)))6α(24+qθ(24+qθ(12+qθ(4+qθ))))qθ(120+qθ(60+qθ(20+qθ(5+qθ)))))12(10+3α(4+α))eqθ, (6.5)
    GI=5(63+α[189+4α(49+3α(7+α))])64(1+α)(2+α)[10+3α(4+α)]. (6.6)

    Table 3 presents some values of the Gini Index for WGQLD for different values of α

    Table 3.  Gini index values for the WGQLD for selected values of α.
    α GI(α) α GI(α) α GI(α)
    1 0.2833333 16 0.3115732 31 0.3122193
    2 0.2956578 17 0.3116666 32 0.3122354
    3 0.3014769 18 0.3117464 33 0.3122502
    4 0.3047121 19 0.3118154 34 0.3122637
    5 0.3067016 20 0.3118753 35 0.3122762
    6 0.3080137 21 0.3119276 36 0.3122877
    7 0.3089251 22 0.3119736 37 0.3122984
    8 0.3095841 23 0.3120143 38 0.3123082
    9 0.3100762 24 0.3120505 39 0.3123174
    10 0.3104533 25 0.3120828 40 0.3123259
    11 0.3107487 26 0.3121117 41 0.3123339
    12 0.3109844 27 0.3121377 42 0.3123413
    13 0.3111755 28 0.3121611 43 0.3123482
    14 0.3113326 29 0.3121824 44 0.3123547
    15 0.3114633 30 0.3122017 45 0.3123607

     | Show Table
    DownLoad: CSV

    Table 3 explains that the Gini index values for the WGQL distribution are increasing as α values are increasing, and on the average its value is about 0.31.

    In this section, we consider six methods of estimation for estimating the unknowns parameters α and θ of the WGQLD distribution. These methods include the (1) maximum likelihood (ML) method, (2) method of maximum product of spacings, (3) ordinary least square method, (4) weight least square method, (5) method of Cramer-Von-Mises, and (6) method of Anderson-Darling.

    First of all, we investigate the ML estimates (MLEs) of θ and α. Let X1,X2,Xn be a random sample of size n selected from the WGQLD. The likelihood function is given by:

    L(x;θ, α)=ni=1f(xi, θ, α)=(θ32(α2+3α+2))nni=1 (α2x2i+αθx3i+θ2x4i6)eθxi, (7.1)

    and the log-likelihood function Ξ=lnL (x;θ, α) is:

    Ξ=nln(θ32(α2+3α+2))+ni=1ln(α2x2i+αθx3i+θ2x4i6)θni=1xi. (7.2)

    The derivatives of Ξ with respect to θ and α are:

    dΞdθ=3nθ+ni=12xi(xiθ+3α)x2iθ2+6αxiθ+6α2ni=1xi, (7.3)
    dΞdα=n(2α+3)α2+3α+2+ni=112α+6θxi6α2+6θxiα+θ2x2i. (7.4)

    Since there is no closed form for these equations, then the MLEs ˆθ and ˆα of θ and α, respectively, can be solved simultaneously using a numerical method as Newton Raphson method.

    The maximum product of spacing (MPS) method is proposed by [11,12] as an alternative to the maximum likelihood method. The MPS method requires a maximization of the geometric mean of the spacings in the data with respect to the parameters. Consider a random sample of size n, X1,X2,,Xn from WGQLD distribution, then uniform spacings is given as:

    Υi(θ,α)=F(xi:n|θ,α)F(xi1:n|θ,α),i=1,,n, 

    where F(x0:n|θ,α)=0 and F(xn+1:n|θ,α)=1. Clearly n+1i=1Υi(θ,α)=1.

    The MPSs, ˆαMPS and ˆθMPS, are the values of α and θ, which maximize the geometric mean of the spacing:

    Z(θ,α|x)=[n+1i=1Υi(θ,α)]1n+1. (7.5)

    The natural logarithm of (7.5) is:

    H(θ,α|x)=1n+1n+1i=1logΥi(θ,α).

    The MPSs estimators ˆαMPS and ˆθMPS of the parameters α and θ, respectively, can also be obtained by solving the nonlinear equations:

    θH(θ,α)=1n+1n+1i=11Υi(θ,α)[Δ1(xi:n|θ,α)Δ1(xi1:n|θ,α)]=0,
    αH(θ,α)=1n+1n+1i=11Υi(θ,α)[Δ2(xi:n|θ,α)Δ2(xi1:n|θ,α)]=0,

    where

    Δ1(xi:n|θ,α)=θF(xi:n|θ,α)=θ3x3i:neθxi:n(6α2+(2θxi:n+8)α+3θxi:n)12(α+1)2(α+2)2, (7.6)
    Δ2(xi:n|θ,α)=αF(xi:n|θ,α)=x3i:nθ2(x2i:nθ2+6αxi:nθ+6α2)exi:nθ12(α+1)(α+2), (7.7)

    which can be obtained numerically.

    The least square methods are introduced by [28] to estimate the parameters of beta distribution. Let Xi:n be the ith order statistic of the random sample X1,X2,,Xn with distribution function F(x), then a main result in probability theory indicates that F(Xi:n)Beta(i,ni+1). Moreover, we have

    E[F(Xi:n)]=in+1 and Var[F(Xi:n)]=i(ni+1)(n+1)2(n+2).

    Using the expectations and variances, we obtain two variants of the least squares methods.

    For the WGQLD distribution parameters estimation, the ordinary least square estimators ˆθOLS and ˆαOLS of the parameters θ and α, respectively can be obtained by minimizing the function:

    Ω(θ,α|x)=ni=1[F(xi:n|θ,α)in+1]2=ni=1[1(24+6α2[2+xi:nθ(2+xi:nθ)]+6α[6+xi:nθ(6+xi:nθ(3+xi:nθ))]+xθ[24+xi:nθ(12+xi:nθ(4+xi:nθ))])12(1+α)(2+α)eθxi:nin+1]2,

    with respect to θ and α. Alternatively, these estimates can also be obtained by solving the following nonlinear equations:

    ni=1[F(xi:n|θ,α)in+1]Δ1(xi:n|θ,α)=0,
    ni=1[F(xi:n|θ,α)in+1]Δ2(xi:n|θ,α)=0,

    where Δ1(xi:n|θ,α) and Δ2(xi:n|θ,α) are defined as in 7.6 and 7.7, respectively.

    For the WGQLD distribution, the weighted least square estimators of θ and α say, ˆθWLS and ˆαWLS, respectively can be obtained by minimizing the function:

    W(θ,α|x)=ni=1(n+1)2(n+2)i(ni+1)[F(xi:n|θ,α)in+1]2=ni=1(n+1)2(n+2)i(ni+1)[1(24+6α2[2+xi:nθ(2+xi:nθ)]+6α[6+xi:nθ(6+xi:nθ(3+xi:nθ))]+xθ[24+xi:nθ(12+xi:nθ(4+xi:nθ))])12(1+α)(2+α)eθxi:nin+1]2,

    with respect to θ and α. Equivalently, these estimators are the solution of the following nonlinear equations:

    ni=1(n+1)2(n+2)i(ni+1)[F(xi:n|θ,α)in+1]Δ1(xi:n|θ,α)=0,
    ni=1(n+1)2(n+2)i(ni+1)[F(xi:n|θ,α)in+1]Δ2(xi:n|θ,α)=0,

    where Δ1(xi:n|θ,α) and Δ2(xi:n|θ,α) are specified as in 7.6 and 7.7, respectively.

    Here, we use two popular methods based on the minimization of test statistics between the theoretical and empirical cumulative distribution functions. The methods are Cramer-von-Mises method and the method of Anderson-Darling (for more details see [13] and [24]).

    The Cramer-von-Mises estimators (CVEs) ˆθ and ˆα of θ and α respectively, are obtained by minimizing the following function:

    CV(θ,α)=112n+ni=1(n+1)2(n+2)i(ni+1)[F(x(i:n);θ,α)2i12n]2=112n+ni=1(n+1)2(n+2)i(ni+1)[1(24+6α2[2+xi:nθ(2+xi:nθ)]+6α[6+xi:nθ(6+xi:nθ(3+xi:nθ))]+xθ[24+xi:nθ(12+xi:nθ(4+xi:nθ))])12(1+α)(2+α)eθxi:n2i12n]2,

    with respect to θ and α. Equivalently, these estimators are the solution of the following nonlinear equations:

    ni=1(n+1)2(n+2)i(ni+1)[F(xi:n|θ,α)2i12n]Δ1(xi:n|θ,α)=0,
    ni=1(n+1)2(n+2)i(ni+1)[F(xi:n|θ,α)2i12n]Δ2(xi:n|θ,α)=0,

    where Δ1(xi:n|θ,α) and Δ2(xi:n|θ,α) are given in 7.6 and 7.7, respectively.

    The Anderson-Darling (AD) estimates of the WGQLD distribution parameters θ and α denoted by ˆθAD and ˆαAD can be obtained by minimizing the following function

    A(α, θ)=n1nni=1(2i1){log F(xi:n|α, θ)+log¯F(xni+1:n|α, θ)},

    with respect to θ and α, or by solving the following two equations

    A(α,λ)λ=ni=1(2i1){Δ1(xi:n|α,λ)F(xi:n|α,λ)Δ1(xni+1:n|α,λ)¯F(xni+1:n|α,λ)}=0,

    and

    A(α,λ)α=ni=1(2i1){Δ2(xi:n|α,λ)F(xi:n|α,λ)Δ2(xni+1:n|α,λ)¯F(xni+1:n|α,λ)}=0,

    where Δ1(xi:n|θ,α) and Δ2(xi:n|θ,α) are specified in 7.6 and 7.7, respectively.

    This section compares the performances of the proposed estimators of the WGQLD parameters α and θ. This comparison is carried out by taking random samples of different sizes (n=20, 40, 60, 80,100 and 200) with various pairs of parameters values (θ,α) = (0.25, 1), (0.5, 1.5), (0.75, 2), (1, 1), (0.3, 2), (0.2, 3), (0.8, 1), (1, 3). The estimators are compared in terms of there mean square errors (MSE) and the estimated (Es) values of the parameters. The results are summarized in the Tables 47.

    Table 4.  Estimates and MSEs using the ML, MPS, OLS, WLS, AD and CV methods for the WGQLD model for n = 20.
    Parameters MLEs MPS OLS WLS CVEs AD
    Es MSE Es MSE Es MSE Es MSE Es MSE Es MSE
    α=0.25 0.426 0.3075 0.377 0.2919 0.486 0.4311 0.472 0.3890 0.456 0.3717 0.463 0.3680
    θ=1 1.010 0.0118 1.026 0.0129 1.006 0.0134 1.005 0.0127 1.008 0.0127 1.005 0.0121
    α=0.5 0.781 1.0029 0.718 1.0197 0.835 1.1394 0.822 1.0732 0.804 1.0553 0.811 1.0250
    θ=1.5 1.523 0.0288 1.550 0.0325 1.516 0.0335 1.515 0.0319 1.521 0.0321 1.515 0.0304
    α=0.75 1.133 1.8082 1.075 1.9053 1.196 2.0488 1.177 1.9076 1.157 1.8866 1.167 1.8744
    θ=2 2.031 0.0562 2.068 0.0626 2.018 0.0639 2.017 0.0604 2.025 0.0607 2.017 0.0583
    α=1 1.485 2.5509 1.429 2.6727 1.552 2.7457 1.530 2.6005 1.511 2.5964 1.514 2.528
    θ=1 1.016 0.0140 1.036 0.0159 1.012 0.0165 1.010 0.0156 1.015 0.0156 1.010 0.0148
    α=0.3 0.496 0.4830 0.441 0.4607 0.546 0.5756 0.534 0.5275 0.518 0.5111 0.527 0.5156
    θ=2 2.021 0.0487 2.053 0.0538 2.010 0.0551 2.008 0.0527 2.015 0.0528 2.009 0.0509
    α=0.2 0.412 0.3789 0.368 0.3773 0.464 0.5029 0.455 0.4562 0.440 0.4340 0.445 0.4371
    θ=3 3.046 0.1080 3.094 0.1213 3.034 0.1251 3.033 0.1202 3.044 0.1202 3.033 0.1134
    α=0.8 1.202 2.0044 1.148 2.1251 1.266 2.2173 1.248 2.0845 1.228 2.0673 1.237 2.0439
    θ=1 1.014 0.0141 1.034 0.0161 1.009 0.0166 1.009 0.0157 1.013 0.0157 1.009 0.0151
    α=1 1.480 2.6725 1.429 2.8627 1.546 2.9849 1.519 2.8085 1.502 2.7973 1.511 2.7333
    θ=3 3.043 0.1308 3.103 0.1497 3.027 0.154 3.023 0.1462 3.036 0.1464 3.024 0.1392

     | Show Table
    DownLoad: CSV
    Table 5.  Estimates and MSEs using the ML, MPS, OLS, WLS, AD and CV methods for the WGQLD model for n = 50.
    Parameters MLEs MPS OLS WLS CVEs AD
    Es MSE Es MSE Es MSE Es MSE Es MSE Es MSE
    α=0.25 0.315 0.0771 0.283 0.0674 0.335 0.0949 0.331 0.0878 0.323 0.0849 0.329 0.0868
    θ=1 1.001 0.0047 1.010 0.0049 0.999 0.0053 0.999 0.0050 1.001 0.0050 0.999 0.0049
    α=0.5 0.576 0.1816 0.534 0.1741 0.604 0.2142 0.596 0.1981 0.586 0.1943 0.595 0.1965
    θ=1.5 1.505 0.0113 1.520 0.0120 1.504 0.0130 1.503 0.0123 1.506 0.0123 1.503 0.0121
    α=0.75 0.875 0.4170 0.829 0.4199 0.902 0.4771 0.894 0.4451 0.884 0.4409 0.892 0.4370
    θ=2 2.012 0.0217 2.033 0.0231 2.007 0.0256 2.007 0.0238 2.011 0.0239 2.007 0.0234
    α=1 1.145 0.5971 1.101 0.6059 1.174 0.6490 1.163 0.6149 1.153 0.6132 1.162 0.6064
    θ=1 1.004 0.0051 1.014 0.0054 1.002 0.0058 1.002 0.0055 1.004 0.0055 1.002 0.0054
    α=0.3 0.363 0.0849 0.328 0.0754 0.389 0.1047 0.383 0.0972 0.375 0.0941 0.381 0.0957
    θ=2 2.007 0.0180 2.025 0.0192 2.003 0.0211 2.003 0.0198 2.007 0.0198 2.003 0.0195
    α=0.2 0.281 0.0654 0.252 0.0560 0.306 0.0862 0.300 0.0780 0.293 0.0748 0.298 0.0777
    θ=3 3.015 0.0415 3.040 0.0441 3.010 0.0479 3.010 0.0452 3.015 0.0453 3.009 0.0444
    α=0.8 0.935 0.4789 0.891 0.4883 0.958 0.5383 0.953 0.5067 0.943 0.5026 0.950 0.5011
    θ=1 1.005 0.0054 1.016 0.0058 1.003 0.0062 1.003 0.0059 1.005 0.0059 1.003 0.0058
    α=1 1.157 0.7315 1.115 0.7467 1.187 0.8219 1.174 0.7597 1.164 0.7562 1.175 0.7566
    θ=3 3.010 0.0528 3.042 0.0561 3.004 0.0615 3.003 0.0577 3.009 0.0578 3.003 0.0570

     | Show Table
    DownLoad: CSV
    Table 6.  Estimates and MSEs using the ML, MPS, OLS, WLS, AD and CV methods for the WGQLD model for n = 100.
    Parameters MLEs MPS OLS WLS CVEs AD
    Es MSE Es MSE Es MSE Es MSE Es MSE Es MSE
    α=0.25 0.287 0.0343 0.265 0.0312 0.3042 0.0433 0.298 0.0393 0.294 0.0383 0.299 0.0395
    θ=1 1.003 0.0023 1.008 0.0024 1.003 0.0026 1.002 0.0025 1.003 0.0025 1.002 0.0024
    α=0.5 0.540 0.0819 0.511 0.0797 0.551 0.0967 0.547 0.0892 0.542 0.0882 0.548 0.0892
    θ=1.5 1.504 0.0057 1.513 0.0059 1.503 0.0066 1.503 0.0062 1.504 0.0062 1.503 0.0061
    α=0.75 0.797 0.1301 0.768 0.1295 0.811 0.1509 0.806 0.1397 0.801 0.1387 0.807 0.1392
    θ=2 2.006 0.0099 2.018 0.0104 2.003 0.0116 2.003 0.0107 2.005 0.0107 2.003 0.0106
    α=1 1.096 0.2412 1.069 0.2411 1.107 0.2800 1.104 0.2593 1.098 0.2578 1.104 0.2577
    θ=1 1.005 0.0028 1.011 0.0029 1.003 0.0033 1.004 0.0030 1.005 0.0031 1.003 0.0030
    α=0.3 0.326 0.0369 0.302 0.0344 0.336 0.0442 0.333 0.0412 0.329 0.0404 0.334 0.0411
    θ=2 2.002 0.0092 2.012 0.0094 1.999 0.0102 1.999 0.0096 2.001 0.0096 1.999 0.0096
    α=0.2 0.240 0.0262 0.220 0.0228 0.252 0.0320 0.248 0.0297 0.244 0.0288 0.249 0.0296
    θ=3 3.009 0.0194 3.024 0.0201 3.005 0.0220 3.005 0.0207 3.008 0.0207 3.005 0.0205
    α=0.8 0.846 0.1625 0.818 0.1621 0.854 0.1858 0.852 0.1748 0.847 0.1739 0.852 0.1725
    θ=1 1.000 0.0027 1.007 0.0028 0.999 0.0032 0.999 0.0030 1.000 0.0030 0.999 0.0029
    α=1 1.071 0.2538 1.044 0.2564 1.087 0.2868 1.080 0.2664 1.074 0.2651 1.081 0.2669
    θ=3 3.006 0.0248 3.025 0.0258 3.003 0.0298 3.002 0.0274 3.006 0.0274 3.002 0.0273

     | Show Table
    DownLoad: CSV
    Table 7.  Estimates and MSEs using the ML, MPS, OLS, WLS, AD and CV methods for the WGQLD model for n = 200.
    Parameters MLEs MPS OLS WLS CVEs AD
    Es MSE Es MSE Es MSE Es MSE Es MSE Es MSE
    α=0.25 0.263 0.0162 0.249 0.0154 0.271 0.0204 0.268 0.0185 0.266 0.0183 0.269 0.0185
    θ=1 1.000 0.0011 1.003 0.0011 1.000 0.0013 1.000 0.0012 1.001 0.0012 1.000 0.0012
    α=0.5 0.512 0.0364 0.495 0.0362 0.519 0.0430 0.517 0.0397 0.514 0.0395 0.517 0.0397
    θ=1.5 1.501 0.0028 1.506 0.0028 1.500 0.0032 1.500 0.0030 1.501 0.0030 1.500 0.0030
    α=0.75 0.762 0.0563 0.745 0.0564 0.770 0.0637 0.767 0.0594 0.764 0.0592 0.767 0.0592
    θ=2 2.000 0.0048 2.007 0.0049 1.999 0.0054 1.999 0.00511 2.000 0.0051 1.998 0.0050
    α=1 1.026 0.0976 1.011 0.0979 1.034 0.1101 1.031 0.1031 1.028 0.1028 1.031 0.1033
    θ=1 1.000 0.0013 1.004 0.0013 0.999 0.0015 1.000 0.0014 1.000 0.0014 1.000 0.0014
    α=0.3 0.307 0.0191 0.291 0.0186 0.315 0.0229 0.313 0.0212 0.310 0.0210 0.313 0.0212
    θ=2 2.000 0.0046 2.007 0.0047 1.999 0.0051 1.999 0.0048 2.000 0.0048 1.999 0.0048
    α=0.2 0.215 0.0125 0.202 0.0114 0.222 0.0149 0.220 0.0138 0.217 0.0136 0.220 0.0138
    θ=3 2.999 0.0100 3.008 0.0102 2.998 0.0113 2.998 0.0107 2.999 0.0107 2.998 0.0106
    α=0.8 0.837 0.0749 0.821 0.0744 0.842 0.0846 0.841 0.0793 0.838 0.0790 0.842 0.0792
    θ=1 1.002 0.0013 1.006 0.0014 1.001 0.0015 1.002 0.0014 1.002 0.0014 1.002 0.0014
    α=1 1.030 0.0935 1.015 0.0935 1.040 0.1044 1.036 0.0978 1.033 0.0975 1.036 0.0976
    θ=3 3.003 0.0116 3.014 0.0119 3.002 0.0133 3.002 0.0125 3.004 0.0125 3.001 0.0124

     | Show Table
    DownLoad: CSV

    Based on Tables 47 it is clear that:

    ● The MSEs values are decreasing as the sample sizes values are increasing for all cases considered in this section. As an example, for α=1,θ=3, with n=50 based on the AD, the MSEs are 0.7566 and 0.0570 compared to 0.2669 and 0.0273 for n=100, respectively.

    ● The bias values of the suggested estimators are decreasing as the sample sizes are increasing, and approaches zero for all cases for large n. For illustration, for α=0.3,θ=2, with n=100 the Es values are 0.302 and 2.012 using the MPS as compared to 0.291 and 2.007 for n=200, respectively.

    ● It can be observed that for most of the cases, the MLEs method has the smallest values of the MSEs among all methods of estimation.

    In this section, we use data sets to illustrate the usefulness of the WGQL model, where four different data sets are used related to the environment, engineering and two medical data sets are considered. We compare the WGQL distribution to some well known distributions of two parameters as the generalized Quasi Lindley distribution, Quasi Lindley distribution, two-parameter Sujatha distribution, and the Pareto distribution.

    The first data set is taken from [22] represents the 100 annual maximum precipitation (inches) for one rain gauge in Fort Collins, Colorado, from 1900 through 1999. The data are given below:

    Data Set 1: 239,232,434, 85,302,174,170,121,193,168,148,116,132,132,144,183,223, 96,298, 97,116,146, 84,230,138,170,117,115,132,125,156,124,189,193, 71,176,105, 93,354, 60,151,160,219,142,117, 87,223,215,108,354,213,306,169,184, 71, 98, 96,218,176,121,161,321,102,269, 98,271, 95,212,151,136,240,162, 71,110,285,215,103,443,185,199,115,134,297,187,203,146, 94,129,162,112,348, 95,249,103,181,152,135,463,183,241 5.

    The second data set from [25] consists of 100 observations on breaking stress of carbon fibers (in Gba). The data are as follows:

    Data Set 2: 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.655.

    Due to the importance of the studies about the Covid-19 in the last years, we considered two sets of Covid-19 related to Algeria and Saudi Arabia in various times. The third data set is the Covid-19 data for the daily new cases in Algeria from 12 August 2020 to 09 November 2020 and it is available on the following electronic address https://sehhty.com/dz-covid/. It is given as follows

    Data Set 3: 642,670,581,631,642,548,405,302,330,291,319,306,320,287,276,263,250,273,276,252,213,214,199,205,221,193,185,174,153,132,136,146,138,121,129,134,141,148,157,160,162,155,146,153,160,175,179,186,191,197,203,210,219,228,232,238,242,247,255,264,272,278,285,289,293,298,304,311,325,339,348,365,378,387,397,391,370,398,392,401,409,411,403,419,442,450,469,477,488,495.

    The box and TTT plots for the above data are given in Figures 7 and 8, respectively.

    Figure 7.  Box plot for data sets 1, 2 and 3.
    Figure 8.  TTT plot for data sets 1, 2 and 3.

    The fourth data set is calling the Covid-19 data which present the daily new cases in Saudi Arabia from 24 March 2020 to 24 April 2020 and it is given by

    Data Set 4: 1, 1, 1, 0, 1, 4, 0, 2, 6, 5, 4, 4, 5, 4, 3, 0, 3, 3, 5, 7, 6, 8, 6, 4, 4, 5, 5, 6, 6, 5, 7, 6. The descriptive statistics for the data is given in Table 8.

    Table 8.  Statistical properties of the data sets 1, 2 and 3.
    n Min Max Mean Median St derivation Kurtosis Skweness
    Data Set 1: 100 60.000 463.000 175.670 158.000 83.166 1.713 1.316
    Data Set 2: 100 0.390 5.560 2.621 2.700 1.013 0.043 0.362
    Data Set 3: 90 121.000 670.000 294.322 274.500 131.618 0.369 0.927
    Data Set 4: 32 0 8 3.97 4 2.24 -0.98 -3.35

     | Show Table
    DownLoad: CSV

    The WGQLD distribution is fitted to these two real data sets and compared with the following models:

    ● The generalized Quasi Lindley distribution: f(x)=θ2(θ2x36+αθx2+α2x)eθx(α+1)2.

    ● Quasi Lindley distribution: f(x)=θ(α+xθ)α+1eθx.

    ● The Pareto distribution: f(x)=αθαxα+1.

    ● Two-parameter Sujatha distribution: f(x)=θ3(x2+αx+1)eθxθ2+αθ+2.

    To choose the best model fitting, we considered Akaike information criterion (AIC) introduced by [1], Baysian information criterion (BIC) proposed by [30], Hannan Quinn Information Criterion (HQIC) suggested by [21], Consistent Akaike Information Criterion (CAIC) by [10], Kolmogorov-Smirnov (KS), where AIC = 2L+k,, CAIC = 2L+22knnk1, HQIC = 2loglog(n)[k2L], BIC = 2L+klog(n), KS = sup|Fn(x)F(x)|,Fn(x)=1nniłxix, where k is the number of parameters and n is the sample size and L is the value of maximum log-likelihood function.

    Based on the results reported in Tables 9, 10, 11 and 12, we observe that the WGQLD provides the better fit with the smallest values of AIC, AICc, BIC, HQIC and K-S with maximum P-values as compared to its competitive models considered in this study. Figures 9, 10, 11 and 12 support this claim.

    Table 9.  The goodness of fit tests for data set 1.
    Model AIC CAIC BIC HQIC K-S p-value
    WGQLD 1142.145 1142.268 1147.355 1144.253 0.059902 0.865573
    GQLD 1145.844 1145.968 1151.055 1147.953 0.095349 0.323229
    QLD 1180.179 1180.303 1185.389 1182.288 0.216170 0.000174
    PD 1237.721 1237.845 1242.932 1239.83 0.340971 1.59e-10
    TSPD 1156.301 1156.425 1161.511 1158.41 0.143704 0.032159

     | Show Table
    DownLoad: CSV
    Table 10.  The goodness of fit tests for data set 2.
    Model AIC AICc BIC HQIC K-S p-value
    WGQLD 295.1091 295.2328 300.3194 297.2178 0.105898 0.212049
    GQLD 306.1634 306.2871 311.3737 308.2721 0.123234 0.095915
    QLD 346.108 346.2317 351.3183 348.2167 0.223871 8.86e-05
    PD 396.7418 396.8655 401.9522 398.8505 0.320272 2.46-09
    TSPD 350.3233 350.447 355.5336 352.432 0.220935 0.000115

     | Show Table
    DownLoad: CSV
    Table 11.  The goodness of fit tests for data set 3.
    Model AIC AICc BIC HQIC K-S p-value
    WGQLD 1118.42 1118.558 1123.420 1120.436 0.0606885 0.8946827
    GQLD 1122.41 1122.548 1127.410 1124.426 0.0900125 0.4593636
    QLD 1154.697 1154.835 1159.696 1156.713 0.2081433 0.0008209
    PD 1207.242 1207.38 1212.241 1209.258 0.3435296 1.190e-09
    TSPD 1132.559 1132.697 1137.559 1134.575 0.1352032 0.0744752

     | Show Table
    DownLoad: CSV
    Table 12.  The goodness of fit tests for data set 4.
    Model AIC AICc BIC HQIC K-S p-value
    WGQLD 161.0522 161.4966 163.8546 161.9487 0.3077698 0.006804395
    GQLD 166.9975 167.4419 169.7999 167.894 0.3318577 0.00269967

     | Show Table
    DownLoad: CSV
    Figure 9.  Plots of estimated probability density functions and cumulative distribution functions for data set 1.
    Figure 10.  Plots of estimated probability density functions and cumulative distribution functions for data set 2.
    Figure 11.  Plots of estimated probability density functions and cumulative distribution functions for data set 3.
    Figure 12.  Plots of estimated probability density functions and cumulative distribution functions for data set 4.

    In this article, we proposed the WGQLD distribution along with some of its properties such as, stochastic ordering, Median deviation, Harmonic mean, some plots of the pdf and cdf, Bonferroni and Lorenz curves and Gini index moments, coefficient of variation, coefficient of skewness and coefficient of kurtosis. Also, the hazard rate function, reliability function, reversed hazard rate and odds functions are presented. The maximum likelihood estimates is computed as well as the maximum product of spacing's, ordinary least squares, weighted least squares, Cramer-von-Mises, and Anderson-Darling methods are obtained. The results show that the best method of estimation is the MLE method. Applications of various real data sets are analyzed for illustration. It is proved that the WGQLD is empirically better than other competitors models considered in this study including the base GQLD. Therefore, in the future, the authors intend to investigate the performance of different estimators of the WGQLD based on ranked set sampling method and its modifications, see [3,4,19,20,32].

    The author declare that they have no conflict of interest

    The authors extend their appreciation to the deputy ship for research and innovation, "Ministry of Education" in Saudi Arabia for funding this research work through project No. IFKSURG-1438-086.



    [1] I. Podlubny, Fractional differential equations, Lightning Source Inc, 1998.
    [2] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci., 2021, https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
    [3] H. Zhang, J. Cheng, H. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos Soliton. Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
    [4] C. Wang, H. Zhang, H. Zhang, W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2021), 14000–14012. https://doi.org/10.3934/math.2021809 doi: 10.3934/math.2021809
    [5] F. Jin, Z. S. Qian, Y. M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [6] H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Caocd, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simulat., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
    [7] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [8] S. Narges Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multi-step methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [9] Y. Cheng, H. Zhang, W. Zhang, H. Zhang, Novel algebraic criteria on global Mittag-Leffler synchronization of FOINNs with the Caputo derivative and delay, J. Appl. Math. Comput., 2021. https://doi.org/10.1007/s12190-021-01672-0 doi: 10.1007/s12190-021-01672-0
    [10] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [11] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical -discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
    [12] F. Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [13] S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted n-fold type inequalities via discrete generalized ˆh-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
    [14] S. A. Iqbal, M. G. Hafez, Y. M. Chu, C. Park, Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative, J. Appl. Anal. Comput., 12 (2022), 770–789. https://doi.org/10.11948/20210324 doi: 10.11948/20210324
    [15] D. Kumar, J. Singh, D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-leffler type kernel, Physica A, 492 (2018), 155–167. https://doi.org/10.1016/j.physa.2017.10.002 doi: 10.1016/j.physa.2017.10.002
    [16] D. Kumar, J. Singh, K. Tanwar, D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and mittag-leffler laws, Int. J. Heat. Mass. Tran., 138 (2019), 1222–1227. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.094 doi: 10.1016/j.ijheatmasstransfer.2019.04.094
    [17] S. Rashid, S. Sultana, Z. Hammouch, F. Jarad, Y. S. Hamed, Novel aspects of discrete dynamical type inequalities within fractional operators having generalized h-discrete Mittag-Leffler kernels and application, Chaos Soliton. Fract., 151 (2021), 111204. https://doi.org/10.1016/j.chaos.2021.111204 doi: 10.1016/j.chaos.2021.111204
    [18] W. M. Qian, H. H. Chu, M. K. Wang, Y. M. Chu, Sharp inequalities for the Toader mean of order 1 in terms of other bivariate means, J. Math. Inequal., 16 (2022), 127–141. https://doi.org/10.7153/jmi-2022-16-10 doi: 10.7153/jmi-2022-16-10
    [19] T. H. Zhao, H. H. Chu, Y. M. Chu, Optimal Lehmer mean bounds for the nth power-type Toader mean of n=1,1,3, J. Math. Inequal., 16 (2022), 157–168. https://doi.org/10.7153/jmi-2022-16-12 doi: 10.7153/jmi-2022-16-12
    [20] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 144. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
    [21] M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2022), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
    [22] Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2022), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
    [23] T. H. Zhao, M. Ijaz Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7310 doi: 10.1002/mma.7310
    [24] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [25] N. V. Hoa, H. Vu, T. M. Duc, Fuzzy fractional differential equations under Caputo Katugampola fractional derivative approach, Fuzzy Set. Syst., 375 (2019), 70–99. https://doi.org/10.1016/j.fss.2018.08.001 doi: 10.1016/j.fss.2018.08.001
    [26] N. V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear Sci., 22 (2015), 1134–1157. https://doi.org/10.1016/j.cnsns.2014.08.006 doi: 10.1016/j.cnsns.2014.08.006
    [27] S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE T. Syst. Man Cy., 2 (1972), 30–34. https://doi.org/10.1142/9789814261302_0012 doi: 10.1142/9789814261302_0012
    [28] D. Dubois, H. Prade, Towards fuzzy differential calculus part 3: Differentiation, Fuzzy Set. Syst., 8 (1982), 225–233. https://doi.org/10.1016/S0165-0114(82)80001-8 doi: 10.1016/S0165-0114(82)80001-8
    [29] K. M. Saad, A reliable analytical algorithm for space–time fractional cubic isothermal autocatalytic chemical system, Pramana, 91 (2018), 51. https://doi.org/10.1007/s12043-018-1620-3 doi: 10.1007/s12043-018-1620-3
    [30] K. M. Saad, J. F. Gómez-Aguilar, Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel, Physica A, 509 (2018), 703–7116. https://doi.org/10.1016/j.physa.2018.05.137 doi: 10.1016/j.physa.2018.05.137
    [31] O. A. Arqub, M. Al-Smadi, S. Momani, T. Hayat, Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems, Soft Comput., 21 (2017), 7191–7206. https://doi.org/10.1007/s00500-016-2262-3 doi: 10.1007/s00500-016-2262-3
    [32] O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. Appl., 28 (2017), 1591–1610. https://doi.org/10.1007/s00521-015-2110-x doi: 10.1007/s00521-015-2110-x
    [33] S. Rashid, F. Jarad, K. M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative, AIMS Math., 6 (2021), 10920–10946. https://doi.org/10.3934/math.2021635 doi: 10.3934/math.2021635
    [34] A. Kandel, W. J. Byatt, Fuzzy differential equations, In: Proceedings of international conference cybernetics and society, 1978, 1213–1216.
    [35] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. Theor., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [36] T. Allahviranloo, A. M. Kermani, Numerical methods for fuzzy partial differential equations under new defini-tion for derivative, Iran. J. Fuzzy Syst., 7 (2010), 33–50.
    [37] O. A. Arqub, M. Al-Smadi, S. Momani, T. Hayat, Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems, Soft Comput., 21 (2017), 7191–7206. https://doi.org/10.1007/s00500-016-2262-3 doi: 10.1007/s00500-016-2262-3
    [38] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [39] J. B. Swift, P. C. Hohenberg, Hydrodynamic fuctuations at the convective instability, Phys. Rev. A, 15 (1977), 319. https://doi.org/10.1103/PhysRevA.15.319 doi: 10.1103/PhysRevA.15.319
    [40] P. Hohenberg, J. B. Swift, Effects of additive noise at the onset of Rayleigh-Benard convection, Phys. Rev. A, 46 (1992), 4773–4785. https://doi.org/10.1103/PhysRevA.46.4773 doi: 10.1103/PhysRevA.46.4773
    [41] L. Lega, J. V. Moloney, A. C. Newell, Swift-Hohenberg equation for lasers, Phys. Rev. Lett., 73 (1994), 2978–2981. https://doi.org/10.1103/PhysRevLett.73.2978 doi: 10.1103/PhysRevLett.73.2978
    [42] M. C. Cross, P. C. Hohenberg, Pattern formulation outside of equiblirium, Rev. Mod. Phys., 65 (1993), 851–1112. https://doi.org/10.1103/RevModPhys.65.851 doi: 10.1103/RevModPhys.65.851
    [43] W. Li, Y. Pang, An iterative method for time-fractional Swift-Hohenberg equation, Adv. Math. Phys., 2018 (2018), 2405432. https://doi.org/10.1155/2018/2405432 doi: 10.1155/2018/2405432
    [44] N. A. Khan, N. U. Khan, M. Ayaz, A. Mahmood, Analytical methods for solving the time-fractional Swif-Hohenberg equation, Comput. Math. Appl., 61 (2011), 2182–2185. https://doi.org/10.1016/j.camwa.2010.09.009 doi: 10.1016/j.camwa.2010.09.009
    [45] K. Vishal, S. Kumar, S. Das, Application of homotopy analysis method for fractional Swif Hohenberg equation-revisited, Appl. Math. Model., 36 (2012), 3630–3637. https://doi.org/10.1016/j.apm.2011.10.001 doi: 10.1016/j.apm.2011.10.001
    [46] K. Vishal, S. Das, S. H. Ong, P. Ghosh, On the solutions of fractional Swif Hohenberg equation with dispersion, Appl. Math. Comput., 219 (2013), 5792–5801. https://doi.org/10.1016/j.amc.2012.12.032 doi: 10.1016/j.amc.2012.12.032
    [47] M. Merdan, A numeric-analytic method for time-fractional Swif-Hohenberg equation with modifed Riemann-Liouville derivative, Appl. Math. Model., 37 (2013), 4224–4231. https://doi.org/10.1016/j.apm.2012.09.003 doi: 10.1016/j.apm.2012.09.003
    [48] S. Das, K. Vishal, Homotopy analysis method for fractional Swift-Hohenberg equation, In: Advances in the homotopy analysis method, 2014,291–308. https://doi.org/10.1142/9789814551250_0007
    [49] T. M. Elzaki, The new integral transform Elzaki transform, Global J. Pure Appl. Math., 7 (2011), 57–64.
    [50] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 doi: 10.1016/0022-247X(88)90170-9
    [51] S. Rashid, R. Ashraf, E. Bonyah, On analytical solution of time-fractional biological population model by means of generalized integral transform with their uniqueness and convergence analysis, Adv. Nonlinear Anal. Appl., 2022 (2022), 7021288. https://doi.org/10.1155/2022/7021288 doi: 10.1155/2022/7021288
    [52] S. Rashid, R. Ashraf, F. S. Bayones, A novel treatment of fuzzy fractional Swift-Hohenberg equation for a hybrid transform within the fractional derivative operator, Fractal Fract., 5 (2021), 209. https://doi.org/10.3390/fractalfract5040209 doi: 10.3390/fractalfract5040209
    [53] T. Allahviranloo, Fuzzy fractional differential operators and equations: Fuzzy fractional differential equations, Springer Nature, 2021.
    [54] H. J. Zimmermann, Fuzzy set theory and its applications, Dordrecht: Kluwer Academic Publishers, 1991.
    [55] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
    [56] S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu, P. Agarwal, On analytical aolutions of the fractional differential equation with uncertainty: Application to the Basset problem, Entropy, 7 (2015), 885–902. https://doi.org/10.3390/e17020885 doi: 10.3390/e17020885
    [57] T. Allahviranloo, M. B. Ahmadi, Fuzzy lapalce transform, Soft Comput., 14 (2010), 235–243. https://doi.org/10.1007/s00500-008-0397-6 doi: 10.1007/s00500-008-0397-6
    [58] M. Yavuz, T. Abdeljawad, Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel, Adv. Differ. Equ., 2020 (2020), 367. https://doi.org/10.1186/s13662-020-02828-1 doi: 10.1186/s13662-020-02828-1
    [59] R. Henstock, Theory of integration, Butterworths, 1963.
    [60] Z. T. Gong, L. L. Wang, The Henstock-Stieltjes integral for fuzzy-number-valued functions, Inform. Sciences, 188 (2012), 276–297. https://doi.org/10.1016/j.ins.2011.11.024 doi: 10.1016/j.ins.2011.11.024
  • This article has been cited by:

    1. Saurabh L. Raikar, Dr. Rajesh S. Prabhu Gaonkar, Jaya algorithm in estimation of P[X > Y] for two parameter Weibull distribution, 2021, 7, 2473-6988, 2820, 10.3934/math.2022156
    2. Lishamol Tomy, Veena G, Christophe Chesneau, Applications of the Sine Modified Lindley Distribution to Biomedical Data, 2022, 27, 2297-8747, 43, 10.3390/mca27030043
    3. SidAhmed Benchiha, Amer Ibrahim Al-Omari, Ghadah Alomani, Goodness-of-Fit Tests for Weighted Generalized Quasi-Lindley Distribution Using SRS and RSS with Applications to Real Data, 2022, 11, 2075-1680, 490, 10.3390/axioms11100490
    4. Amer Ibrahim Al-Omari, Rehab Alsultan, Ghadah Alomani, Asymmetric Right-Skewed Size-Biased Bilal Distribution with Mathematical Properties, Reliability Analysis, Inference and Applications, 2023, 15, 2073-8994, 1578, 10.3390/sym15081578
    5. SidAhmed Benchiha, Laxmi Prasad Sapkota, Aned Al Mutairi, Vijay Kumar, Rana H. Khashab, Ahmed M. Gemeay, Mohammed Elgarhy, Said G. Nassr, A New Sine Family of Generalized Distributions: Statistical Inference with Applications, 2023, 28, 2297-8747, 83, 10.3390/mca28040083
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1670) PDF downloads(118) Cited by(3)

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog