Both the exponential and Lindley distributions can be used to model the lifetime of a system or process, as well as the distribution of waiting times. In this study, we introduce the $ WLE(\theta, \lambda, \alpha) $ notation for the weighted Lindley exponential distribution. Using two distinct asymmetrical distributions, the skewness mechanism of Azzalini was implemented in this distribution. In other words, we multiplied the density function of the Lindley distribution by the distribution function of the exponential distribution after adding the skewness parameter $ \alpha > 0 $. This $ WLE $ distribution contains the Lindley [
Citation: Doaa Basalamah, Bader Alruwaili. The weighted Lindley exponential distribution and its related properties[J]. AIMS Mathematics, 2023, 8(10): 24984-24998. doi: 10.3934/math.20231275
Both the exponential and Lindley distributions can be used to model the lifetime of a system or process, as well as the distribution of waiting times. In this study, we introduce the $ WLE(\theta, \lambda, \alpha) $ notation for the weighted Lindley exponential distribution. Using two distinct asymmetrical distributions, the skewness mechanism of Azzalini was implemented in this distribution. In other words, we multiplied the density function of the Lindley distribution by the distribution function of the exponential distribution after adding the skewness parameter $ \alpha > 0 $. This $ WLE $ distribution contains the Lindley [
[1] | D. V. Lindley, Fiducial distributions and Bayes' theorem, J. Roy. Stat. Soc. B, 20 (1958), 102–107. Available from: http://www.jstor.org/stable/2983909. |
[2] | M. E. Ghitany, F. Alqallaf, D. K. Al-Mutairi, H. A. Husain, A two-parameter weighted Lindley distribution and its applications to survival data, Math. Comput. Simulat., 81 (2011), 1190–1201. https://doi.org/10.1016/j.matcom.2010.11.005 doi: 10.1016/j.matcom.2010.11.005 |
[3] | A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, F. Sharafi, A new weighted Lindley distribution with application, Braz. J. Probab. Stat., 30 (2016), 1–27. https://doi.org/10.1214/14-BJPS253 doi: 10.1214/14-BJPS253 |
[4] | A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Stat., 12 (1985), 171–178. Available from: https://www.jstor.org/stable/4615982. |
[5] | R. D. Gupta, D. Kundu, Theory & methods: Generalized exponential distributions, Aust. NZ J. Stat., 41 (1999), 173–188. |
[6] | R. D. Gupta, D. Kundu, A new class of weighted exponential distributions, Statistics, 43 (2009), 621–634. https://doi.org/10.1080/02331880802605346 doi: 10.1080/02331880802605346 |
[7] | R. L. Plackett, Introduction to probability and statistics from a Bayesian viewpoint, Math. Gaz., 50 (1966), 84–86. https://doi.org/10.2307/3614870 doi: 10.2307/3614870 |
[8] | M. E. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its application, Math. Comput. Simulat., 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007 |
[9] | D. Hamed, A. Alzaghal, New class of Lindley distributions: Properties and applications, J. Stat. Distrib. Appl., 8 (2021), 1–22. https://doi.org/10.1186/s40488-021-00127-y doi: 10.1186/s40488-021-00127-y |
[10] | A. J. Gross, V. A. Clark, Survival distributions: Reliability applications in the biomedical sciences, New York and London, Wiley, 1976. https://doi.org/10.2307/2347245 |
[11] | A. A. Rather, C. Subramanian, A. I. Al-Omari, A. R. A. Alanzi, Exponentiated Ailamujia distribution with statistical inference and applications of medical data, J. Stat. Manag. Syst., 25 (2022), 907–925. https://doi.org/10.1080/09720510.2021.1966206 doi: 10.1080/09720510.2021.1966206 |
[12] | A. A. Adetunji, Transmuted Ailamujia distribution with applications to lifetime observations, Asian J. Probab. Stat., 21 (2023), 1–11. |