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Abstract: Both the exponential and Lindley distributions can be used to model the lifetime of
a system or process, as well as the distribution of waiting times. In this study, we introduce
the WLE(θ, λ, α) notation for the weighted Lindley exponential distribution. Using two distinct
asymmetrical distributions, the skewness mechanism of Azzalini was implemented in this distribution.
In other words, we multiplied the density function of the Lindley distribution by the distribution
function of the exponential distribution after adding the skewness parameter α > 0. This WLE
distribution contains the Lindley [1], the two parameters weighed Lindley [2] and the new weighted
Lindley [3] distributions as special cases. We investigated the proposed model’s mathematical
properties. In addition to studying the central moments, we also investigate maximum likelihood
estimators. To demonstrate the superiority of our model, we employ the MLE method to fit the
weighted Lindley exponential model to the actual data set.
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1. Introduction

As an alternate to the normal distribution, reference [4] introduced the skew normal distribution
to deal with asymmetry. This skewed normal distribution is generated by introducing a skewness
parameter based on a weighted function into the normal distribution. Azzalini’s skewness mechanism
has been utilized with different symmetric distributions to generate skew symmetric distributions, such
as the skew-t distribution, skew uniform, skew Laplace, skew Cauchy and skew logistic, to name a few.

The exponential distribution is a well-known probability distribution utilized in a variety of
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disciplines, including statistics, physics and engineering. It is frequently used to describe the waiting
time between events that occur at a consistent rate and independently. This distribution is characterized
by a single parameter, λ > 0, which measures the rate of events occurrence. The exponential
distribution defined by the probability density function pd f

f (x) = λe−λx, x > 0, λ > 0 (1.1)

where x is the time between events. The expression for the associated cumulative distribution function
(cd f ) is:

F(x) = 1 − e−λx x > 0, λ > 0. (1.2)

Due to the widespread use of the exponential distribution, its properties have been explored in a variety
of contexts. Reference [5] introduced a three parameter distribution called the generalized exponential
distribution which provides a generalization of the exponential distribution that allows for greater
flexibility in modeling the behavior of the data. Using Azzalini’s skewness mechanism, reference [6]
presented weighted exponential distributions.

References [1, 7] it introduced the Lindley distribution as a mixture of exponential and gamma
distributions.Is similar in form to the exponential distribution and is given by the pd f

f (x) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0. (1.3)

The cumulative distribution function corespondent to (1.3) is defined by

F(x) = 1 −
θ + 1 + θx
θ + 1

eθx, x > 0, θ > 0. (1.4)

The shape of the Lindley distribution is determined by a single parameter that governs the skewness
of the distribution. This distribution has been widely used in various fields, including economics,
engineering and finance, due to its simplicity and flexibility. The Lindley distribution can be utilized to
characterize the lifetime of a process or equipment with varying hazard rate forms. It has applications
in numerous sectors, including biology, engineering and medicine among other sectors.

Several scientists investigated the characteristics and applications of the Lindley distribution in
further depth, as seen by [8], whereas other academics concentrated on generalizing the Lindley
distribution by combining it with other well-known distributions.

Reference [9] presented the T-Lindley{Y} class of distribution, which is formed by combining the
quantile functions of the uniform, exponential, weibull, log-logistic, logistic and Cauchy distributions.
Using [4]’s approach, reference [3] combined the Lindley density function with its distribution function
to create the new weighted Lindley distribution. The authors concluded in this research that this
generalization yields superior fits than the Lindley distribution and all of its known generalizations.

In statistical modeling, both the exponential distribution and the Lindley distribution are widely
applied. In a Poisson process, the time between two consecutive events is typically modeled using an
exponential distribution, while the time until a system failure occurs is usually modeled using a Lindley
distribution. A single parameter controls the shape of each distribution for both distributions. In the
exponential distribution, this parameter is the rate parameter, whereas in the Lindley distribution, it
determines the skewness of the distribution as a shape parameter.
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Since the exponential distribution and the Lindley distribution are so widely used, we are interested
in developing a new class of distribution that combines these two distributions while offering a flexible
statistical model. In this study, we develop this new model by combining the two distributions
using [4]’s technique. As far as we are aware, this method has never been used as a continuous
distribution. The rest of the paper is structured as follows. In Section 2, we introduced the the Weighted
Lindley Exponential distribution, WLE, and we presented a wide variety of shapes of its density and
cumulative functions. In Section 3, we studied some theoretical properties of WLE distribution such
as limiting distribution as one of the three parameters approaches its boundaries. Some graphical
representation of the WLE distribution are presented in Section 4. Explicit expressions for the moments
of WLE random variable are provided in Section 5. In Section 6, the maximum likelihood estimators
are constructed for the distribution. Application and data analysis of real data is given in Section 7 as
well as generating a random sample using Inverse Transform Sampling method. Finally, the paper is
concluded in Section 8.

2. Distribution and density functions

We define the three parameters weighted Lindley exponential distribution denoted by WLE in this
section. A graphical representation of the pd f shapes is useful for determining whether or not a data
set can be described using the WLE distribution.

Definition 2.1. A random variable X follows the WLE distribution with parameters θ and λ ∈ <+ if it
has the pd f

f (x) = B(1 + x)e−xθ(1 − e−xαλ), x ≥ 0 (2.1)

where

B =
θ2(θ + αλ)2

αλ(θ(θ + 2) + αλ(1 + θ))
,

and α ∈ <+. We say X ∼ LE(θ, λ, α).

Definition 2.2. The associated cd f of (2.1) is defined by

F(x) = B{
1 − e−xθ

θ
+

e−xθ(−1 + exθ − xθ)
θ2 +

e−x(θ+αλ) − 1
θ + αλ

+
e−x(θ+αλ)(1 − ex(θ+αλ) + x(θ + αλ))

(θ + αλ)2 }. (2.2)

Figures 1 and 2 represent the pdf and cdf curves of the new distribution defined in (2.1) and (2.2),
respectively. We can see that the proposed WLE class of distribution is very flexible in the sense that it
contains decreasing, increasing and upside-down bathtub class of distribution, which makes it a flexible
class of distributions for modeling various lifetime data.
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Figure 1. WLE(θ, λ, α) density as the parameter θ, λ, α varying.

Figure 2. WLE(θ, λ, α) cumulative function as the parameter θ, λ, α varying.

The survival function and failure rate (hazard rate) function for a continuous distribution are defined
as follows.

S (x) = 1 − F(x).

H(x) =
f (x)

1 − F(x)
.

Assuming f (x) and F(x) are defined as in (2.1) and (2.2), respectively, we can define the survival
function and failure rate (hazard rate) function for the Weighted Lindely Exponential distribution.

Figures 3 and 4 show different shapes for the hazard and survival rate functions of the WLE
distribution, considering distinct values of θ, λ and α. It can be observed that the hazard rate function
is rising monotonically and the survival rate function has a bathtub shape for all parameters value ≥ 1.
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Figure 3. Plot of the hazard rate function of the WLE.

Figure 4. Plot of the survival rate function of the WLE.

3. Properties

In this section, we study some theoretical properties of the weighted Lindley exponential
distribution.

In an effort to better comprehend the weighted Lindley exponential model, we examined the
behavior of its probability density function when one of its distribution parameters approaches one
of its boundaries. We applied this investigation to each parameter individually.

Proposition 3.1. Let X ∼ WLE(θ, λ, α) be a random variable with pdf f (x) defined in (2.1). Then,

a. limα→0 f (x) = 0

b. limλ→0 f (x) =
e−xθx(1+x)θ3

2+θ

c. limα→0 f (x) =
e−xθx(1+x)θ3

2+θ
.

Proposition 3.2. Let X ∼ WLE(θ, λ, α) be a random variable with pdf f (x) defined in (2.1). Then,

a. limα→∞ f (x) = 0

b. limλ→∞ f (x) = θ2

1+θ
e−xθ(1 + x)
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c. limα→∞ f (x) = θ2

1+θ
e−xθ(1 + x).

Note that when λ → 0 or α → 0 the pdf of WLE converges to the weighted Lindley distribution
with parameters 2 and θ proposed by [2] as seen in 3.1. On the other hand, when λ → ∞ or α → ∞
the pdf of WLE converges to the Lindley(θ) pdf as seen in 3.2. Thus, we can conclude that Lindley(θ)
and WL(2, θ) are a sub-model of the proposed weighted Lindley exponential distribution.

Proposition 3.3. Let X ∼ WLE(θ, λ, α) be a random variable with pdf f (x) defined in (2.1). Then,
LE(θ, 1, 1) = NWL(θ, 1

θ
) where NWL is the new wighted Lindley distribution proposed by [3].

Proposition 3.4. The mode of the weighted Lindley exponential distribution can be obtained by solving
the following equation

m(x) = Be−xθ
[
e−xαλ(1 + (x + 1)(θ + αλ)) + 1 − θ(1 + x)

]
. (3.1)

To find the value of x that solves this equation, you would typically need to use numerical methods,
such as the Newton-Raphson method or the bisection method to name a few.

4. Graphs

In order to comprehend the impact of each parameter on the overall shape of the WLE density, we
present graphs with two fixed parameters and one variable parameter. Each curve has a unique line
style to distinguish between the various values.

Figure 5 values illustrate the behavior of the Weighted Lindely Exponential density curve fore
different values of theta. It shows that as θ increases, the peak of the density curve shifts to the left, and
the tail of the distribution becomes thinner. For extremely large θ values (e.g., θ=40), the distribution is
highly right-skewed, with a sharp peak near zero and a long right-extending tail. The peak shifts to the
right and the tail becomes heavier as θ decreases (e.g., θ=20, 10, and 5), resulting in more dispersed
distributions. At extremely small values of θ (e.g., θ= 0.005), the curve is relatively flat.This indicates
that the distribution shape is highly dependent on the value of θ assuming all other parameters are
constant and this observation supports the results (a) in properties 3.1 and 3.2.

Figure 5. WLE(θ, λ = 3, α = 2) density curves as the parameter θ varies.

Figure 6 illustrates the behavior of the weighted Lindely exponential density curves for different
arbitrary values of the parameter (λ= 0.005, 0.05, 0.5, 1, 2, 10, and 50), while the other parameters,
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θ and α, remain constant. Notice that as λ increases in value, the distribution becomes less dispersed
and more concentrated around smaller x values. The distribution’s peak shifts to the left, while the tail
becomes thinner. For larger λ values (e.g., 10 and 50), the WLE density curve converges to the curve
of Lindley distribution [1]. As λ decrease, the peak of the distribution becomes less sharp, and the tail
of the distribution becomes thicker. For very small λ values (e.g., 0.005,0.05), the distribution curve
converges to the curve of weighted Lindley distribution with two parameters 2 and θ proposed by [2].
The graphical illustrations of the behavior of the WLE density curve agrees with properties 3.1 and 3.2.

Figure 6. WLE(θ = 3, λ, α = 2) density curves as the parameter λ varies.

Figure 7 illustrates the behavior of the Weighted Lindely Exponential density curves for different
and arbitrary values of the parameter (α= 0.005, 0.05, 0.5, 1, 2, 10, and 50), while the other parameters,
θ and λ, remain constant. Notice that as α increases in value, the distribution becomes less dispersed
and more concentrated around smaller x values. The distribution’s peak shifts to the left, while the tail
becomes thinner. For larger α values (e.g., 10 and 50), the WLE density curve converges to the curve
of Lindley distribution [1]. As α decrease, the peak of the distribution becomes less sharp, and the tail
of the distribution becomes thicker. For very small α values (e.g., 0.005,0.05), the WLE distribution
curve converges to the curve of weighted Lindley distribution with two parameters 2 and θ proposed
by [2]. The graphical illustrations of the behavior of the WLE density curve agrees with properties 3.1
and 3.2. Notice that the behavior of the parameters λ and α are similar, assuming that the remaining
two parameters are constant.

Figure 7. WLE(θ = 3, λ = 2, α) density curves as the parameter α varies.
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In summary, all three parameters (θ, λ, and α) have comparable effects on the WLE distribution, as
depicted in Figures 5–7.

To examine the effect of each parameter on the shape of the density curve in more details, we created
Figures 8–10.

Figures 8–10 facilitate the visual comprehension of the influence of each parameter on the WLE
distribution studied on properties 3.1 and 3.2.

Figure 8. WLE(θ, λ, α) density curves for different values of θ.

Figure 9. WLE(θ, λ, α) density curves for different values of λ.
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Figure 10. WLE(θ, λ, α) density curves for different values of α.

Figure 11 provides a visual comparison between the WLE and NWL distributions with specific
parameter values as specified by property 3.3, allowing us to observe the similarities in their shapes
and behaviors.

Figure 11. Density curve of WLE(θ = 3, λ = 1, α = 1) Vs. NWL(θ = 3, 1
θ=3 ).

Figure 12 provides a visual comparison between the WLE and WL distributions with specific
parameter values as specified by property 3.2, allowing us to observe the similarities in their shapes
and behaviors.
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Figure 12. Density curve of WLE(θ = 3, λ = 0.002, α = 2) Vs. WL(2, θ = 3).

5. Moments

In this section, explicit formulations for the moments of the random variable WLE are derived.

Proposition 5.1. If X is a weighted Lindly exponential with parameters θ > 0, α > 0 and λ > 0 and for
n ≥ 1. The nth central moment of X is given by:

E(xn) = Bn!
(n + 1
θ(n+2) +

1
θn+1 −

(n + 1) + θ + αλ

(θ + αλ)n+2

)
. (5.1)

Where B is a constant as defined in (2.1).

Using the formula in (5.1) we can derive explicit form of the first four central moments as follows.

E(X) = B(
2
θ3 +

1
θ2 −

2 + θ + αλ

(θ + αλ)3 ). (5.2)

E(X2) =
θ2(θ + αλ)2( 6

θ4 + 2
θ3 −

2(3+θ+αλ)
(θ+αλ)4 )

αλ(θ(2 + θ) + αλ(1 + θ))
. (5.3)

E(X3) =
6θ2(θ + αλ)2( 4

θ5 + 1
θ4 −

4+θ+αλ
(θ+αλ)5 )

αλ(θ(2 + θ) + αλ(1 + θ))
. (5.4)

E(X4) =
24θ2(θ + αλ)2( 5

θ6 + 1
θ5 −

5+θ+αλ
(θ+αλ)6 )

αλ(θ(2 + θ) + αλ(1 + θ))
. (5.5)

From (5.2) and (5.3) we concluded that the variance of the three parameters WLE random variable
is given by the following explicit form.

Var(X) = B · 2
(

3
θ4 +

1
θ3 −

3 + θ + αλ

(θ + αλ)4

)
−

(
B

(
2
θ3 +

1
θ2 −

2 + θ + αλ

(θ + αλ)3

))2

. (5.6)
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6. Maximum likelihood estimation

Maximum likelihood inference is a well-known topic whose notation is relatively conventional. The
maximum likelihood estimators (MLEs) of the WLE parameters are provided in this section.

Proposition 6.1. Assume that x̃ = {x1, x2, ..., xn} is an observed sample of size n drawn from the
density (2.1). Then, the likelihood function of x̃ is defined as

L =

n∏
i=1

e−θxi(1 − e−αλxi)(1 + xi)θ2(θ + αλ)2

αλ(θ(2 + θ) + αλ(1 + θ))
, (6.1)

the corresponding log-likelihood function is given by

logL = ` = −θ

n∑
i=1

xi +

n∑
i=1

log (1 − e−αλxi) +

n∑
i=1

log (1 + xi)

+2n log θ + 2n log (θ + αλ) − n logα − n log λ − n log (θ(2 + θ) + αλ(1 + θ)).

(6.2)

Now setting ∂`
∂θ

= 0, ∂`
∂α

= 0, ∂`
∂λ

= 0 respectively, we have

−

n∑
i=1

xi +
2n
θ

+
2n

θ + αλ
−

n(2 + 2θ + αλ)
θ(2 + θ) + αλ(1 + θ)

= 0 (6.3)

n∑
i=1

λxie−λαxi

1 − e−λαxi
+

2nλ
θ + αλ

−
n
α
−

n(1 + θ)λ
θ(2 + θ) + αλ(1 + θ)

= 0 (6.4)

n∑
i=1

αxie−λαxi

1 − e−λαxi
+

2nα
θ + αλ

−
n
λ
−

nα(1 + θ)
θ(2 + θ) + αλ(1 + θ)

= 0. (6.5)

Unfortunately, solving Eqs (6.3)–(6.5) for θ, λ and α, respectively, are quite difficult due to the non-
linear nature of the equations. In practice, we would typically use a numerical method such as the
Newton-Raphson method or a root-finding algorithm to find an approximate the solutions.

7. Simulation and application to real data

7.1. Simulation

In this section, we generate a random sample of the weighted Lindely exponential distribution
using one of the standard techniques for random sampling. Given the probability density function and
cumulative distribution function of the WLE distribution, the Inverse Transform Sampling method can
be used to generate a random sample. We adhered to these steps:

(1) First, we defined the probability density function (2.1) and cumulative distribution function (2.2)
of the WLE distribution with the parameters θ, λ and α.

(2) Since the Inverse Transform Sampling technique requires the inverse of the cdf, we tried to
seek an analytical solution for the inverse cdf. However, the given cdf was complex, and an
analytical solution for its inverse could not be found. Therefore, a numerical method was chosen
to approximate the inverse of the cdf.
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(3) With a sample size of 1000, we generated a set of uniformly distributed random numbers U(0, 1)
with a uniform distribution. Using R’s “runif” function, these random numbers were generated.

(4) We determined, for each uniformly distributed random number ui, the value xi such that F(xi) =

ui. In R, the “uniroot” function was used to find the root of the equation F(x)−u = 0. We used the
“uniroot” method which is a numerical method for locating the root of a function within a given
interval.

(5) Step four yields a random sample from the WLE distribution with parameters θ, λ and α. Using
the Inverse Transform Sampling method, we were able to successfully generate a random sample
of size 1000 from the WLE distribution.

Figures 13 (a),(b) and 14 represent the histograms of three random samples with size 1000 simulated
from WLE(θ, λ, α) distribution using the inverse transform sampling method, with the parameter
vectors (θ = 2, λ = 3, α = 1), (θ = 1, λ = 2, α = 1.5) and (θ = 3, λ = 0.5, α = 2), respectively.
Suggested from the preceding graphs, the WLE distribution has a right-skew unimodal density that is
ideal for modeling highly skewed data. Changing the parameter values allows the distribution to model
a diverse range of right-skewed data, regardless of whether the data has a thick or thin tail.

(a) Histogram of WEL(θ = 2, λ = 3, α = 1). (b) Histogram of WEL(θ = 1, λ = 2, α = 1.5).

Figure 13. Histogram for WLE random samples of size 500.

Figure 14. Histogram of WEL(θ = 3, λ = 0.5, α = 2) random sample.
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7.2. Application

Employing some discrimination criterion techniques based on the log-likelihood function estimated
at the MLE, we demonstrate the superior performance of the WLE distribution presented here as
compared with some of its sub-models. The Akaike Information Criterion (AIC), the Bayesian
information criterion (BIC) and Hannan-Quinn Information Criterion (HQIC) were considered for
model selection.

We present an example utilizing a widely recognized dataset to showcase the practicality of the
suggested methodology. The table is utilized to present the estimated values of the three parameters
(λ, α, θ) for each model, together with the negative log-likelihood, AIC, BIC and HQIC values.

The relief time dataset illustrates the relief time (in minutes) of analgesic-treated patients. The
data was first reported in [10] and also appeared in a number of lifetime distribution-related
propositions [11] and [12] among others. The data set is given below: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8,
1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.

Table 1 contains descriptive statistics for the data on relief time. It displays the number of
observations, markers for the first four moments (mean, standard deviation, skewness, excess kurtosis),
as well as the minimum and maximum value of the data. According to the descriptive statistics, the
relief time data set is right-skewed which makes the proposed WLE model a good candidate to fit the
data.

Table 1. Summary description of relief time data set.

N Min. Median Mean sd Max. skewness kurtosis
20 1.1 1.7 1.9 0.704 4.1 1.59 2.34

Figure 15 shows the histogram and normal Q-Q plot corresponding to the relief time data set. The
histogram indicates a sufficient quantity of tiny records. The data is skewed to the right, as seen by the
histogram and the departure from normality in the Q-Q plot.

Figure 15. Histogram and Q-Q plot for relief time data set.

Table 2 compares three distribution models for the relief time data set. WLE distribution, Lindley
distribution and exponential distribution are the models considered. The table provides parameter
estimates for each distribution, as well as the negative log-likelihood (−log(l)) and the AIC, BIC and
HQIC.
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Table 2. Parameter estimations for the relief time data set.

Dist. θ λ α −log(l) AIC BIC HQIC
WLE 1.3653 0.0024 0.0095 24.8593 55.7187 58.706 56.3019

Lindley 0.8161 30.2495 62.4991 63.4948 62.6935
Exponential 0.5263 32.8370 67.6742 68.6699 67.8685

The primary objective is to choose the optimal model using the AIC, BIC and HQIC selection
techniques. Lower AIC, BIC and HQIC values indicate a better fit of the model to the data. Comparing
the AIC, BIC and HQIC values for all three models, the WLE distribution has the lowest AIC, BIC and
HQIC, indicating that it best fits the Relief time data set. The WLE distribution is the preferred model
for this data set based on both the AIC, BIC and HQIC selection criteria.

8. Conclusions

The weighted Lindley exponential WLE(θ, λ, α) distribution is a probability distribution that was
created utilizing [4]’s skewing idea using two asymmetric distributions.

The probability density function of the WLE distribution is represented by Eq (2.1), where B is a
normalization constant that ensures the density integrates to one over its support, which is the non-
negative real line. It is a unimodel distribution which contains decreasing, increasing and upside-
down bathtub classes of distribution that makes it a flexible class of distributions for modeling various
lifetime data. The WLE distribution is a member of the family of decreasing failure rate distributions,
as the hazard rate function has monotonically increased and the survival rate function has bathtub
shapes. In addition, it is also a flexible distribution that can be used to model numerous real-world
phenomena, including reliability engineering, finance and insurance. This WLE distribution contains
the Lindley [1], the two parameters weighed Lindley [2] and the new weighted Lindley [3] distributions
as special cases.

We investigated the mathematical properties of the proposed model. In addition to investigating
central moments, we examine maximum likelihood estimators. Based on log-likelihood functions,
different discrimination criterion methods have been used to demonstrate the superiority of our model.
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