In this paper, we introduce a new subclass of $ H $-matrices called $ {SDD_k} $ matrices, which contains $ {SDD} $ matrices and $ {SDD_1} $ matrices as special cases, and present some properties of $ {SDD_k} $ matrices. Based on these properties, we also provide new infinity norm bounds for the inverse of $ {SDD} $ matrices and $ {SDD_k} $ matrices. It is proved that these new bounds are better than some existing results in some cases. Numerical examples demonstrate the effectiveness of the obtained results.
Citation: Xiaodong Wang, Feng Wang. Infinity norm upper bounds for the inverse of $ {SDD_k} $ matrices[J]. AIMS Mathematics, 2023, 8(10): 24999-25016. doi: 10.3934/math.20231276
In this paper, we introduce a new subclass of $ H $-matrices called $ {SDD_k} $ matrices, which contains $ {SDD} $ matrices and $ {SDD_1} $ matrices as special cases, and present some properties of $ {SDD_k} $ matrices. Based on these properties, we also provide new infinity norm bounds for the inverse of $ {SDD} $ matrices and $ {SDD_k} $ matrices. It is proved that these new bounds are better than some existing results in some cases. Numerical examples demonstrate the effectiveness of the obtained results.
[1] | A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, New York: Society for Industrial and Applied Mathematics, 1994. |
[2] | V. Kostić, On general principles of eigenvalue localizations via diagonal dominance, Adv. Comput. Math., 41 (2015), 55–75. https://doi.org/10.1007/s10444-014-9349-0 doi: 10.1007/s10444-014-9349-0 |
[3] | L. Cvetković, V. Kostić, S. Rauški, A new subclass of $H$-matrices, Appl. Math. Comput., 208 (2009), 206–210. https://doi.org/10.1016/j.amc.2008.11.037 doi: 10.1016/j.amc.2008.11.037 |
[4] | C. Y. Zhang, New Advances in Research on $H$-Matrices, Beijing: Science Press, 2017. |
[5] | L. Cvetković, $H$-matrix theory vs. eigenvalue localization, Numer. Algor., 42 (2006), 229–245. https://doi.org/10.1007/s11075-006-9029-3 doi: 10.1007/s11075-006-9029-3 |
[6] | L. Cvetković, V. Kostić, R. Bru, F. Pedroche, A simple generalization of Geršgorin's theorem, Adv. Comput. Math., 35 (2011), 271–280. https://doi.org/10.1007/s10444-009-9143-6 doi: 10.1007/s10444-009-9143-6 |
[7] | R. S. Varga, Matrix Iterative Analysis, $2^{nd}$, Berlin: Springer, 2000. |
[8] | D. L. Cvetković, L. Cvetković, C. Q. Li, $CKV$-type matrices with applications, Linear Algebra Appl., 608 (2021), 158–184. https://doi.org/10.1016/j.laa.2020.08.028 doi: 10.1016/j.laa.2020.08.028 |
[9] | L. Y. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, J. Math. Sci., 249 (2020), 242–255. https://doi.org/10.1007/s10958-020-04938-3 doi: 10.1007/s10958-020-04938-3 |
[10] | L. Y. Kolotilina, On Dashnic-Zusmanovich (DZ) and Dashnic-Zusmanovich type (DZT) matrices and their inverses, J. Math. Sci., 240 (2019), 799–812. https://doi.org/10.1007/s10958-019-04397-5 doi: 10.1007/s10958-019-04397-5 |
[11] | C. Q. Li, L. Cvetković, Y. M. Wei, J. X. Zhao, An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications, Linear Algebra Appl., 565 (2019), 99–122. https://doi.org/10.1016/j.laa.2018.12.013 doi: 10.1016/j.laa.2018.12.013 |
[12] | L. Cvetković, P. F. Dai, K. Doroslovački, Y. T. Li, Infinity norm bounds for the inverse of Nekrasov matrices, Appl. Math. Comput., 219 (2013), 5020–5024. https://doi.org/10.1016/j.amc.2012.11.056 doi: 10.1016/j.amc.2012.11.056 |
[13] | L. Gao, Q. Liu, New upper bounds for the infinity norm of Nekrasov matrices, J. Appl. Math., 14 (2020), 723–733. |
[14] | H. Orera, J. M. Peña, Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices, Appl. Math. Comput., 358 (2019), 119–127. https://doi.org/10.1016/j.amc.2019.04.027 doi: 10.1016/j.amc.2019.04.027 |
[15] | L. Y. Kolotilina, On bounding inverses to Nekrasov matrices in the infinity norm, J. Math. Sci., 199 (2014), 432–437. https://doi.org/10.1007/s10958-014-1870-7 doi: 10.1007/s10958-014-1870-7 |
[16] | L. Cvetković, V. Kostić, K. Doroslovački, Max-norm bounds for the inverse of $S$-Nekrasov matrices, Appl. Math. Comput., 218 (2012), 9498–9503. https://doi.org/10.1016/j.amc.2012.03.040 doi: 10.1016/j.amc.2012.03.040 |
[17] | L. Y. Kolotilina, Bounds for the inverses of generalized Nekrasov matrices, J. Math. Sci., 207 (2015), 786–794. https://doi.org/10.1007/s10958-015-2401-x doi: 10.1007/s10958-015-2401-x |
[18] | P. Dai, J. Li, S. Zhao, Infinity norm bounds for the inverse for $GSDD_1$ matrices using scaling matrices, Comput. Appl. Math., 42 (2023), 121. https://doi.org/10.1007/s40314-022-02165-x doi: 10.1007/s40314-022-02165-x |
[19] | J. M. Peña, Diagonal dominance, Schur complements and some classes of $H$-matrices and $P$-matrices, Adv. Comput. Math., 35 (2011), 357–373. https://doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5 |
[20] | X. Chen, Y. Li, L. Liu, Y. Wang, Infinity norm upper bounds for the inverse of $SDD_1$ matrices, AIMS Math., 7 (2022), 8847–8860. http://dx.doi.org/10.3934/math.2022493 doi: 10.3934/math.2022493 |
[21] | J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. https://doi.org/10.1016/0024-3795(75)90112-3 doi: 10.1016/0024-3795(75)90112-3 |