In this paper, a new proof that $ SDD_1 $ matrices is a subclass of $ H $-matrices is presented, and some properties of $ SDD_1 $ matrices are obtained. Based on the new proof, some upper bounds of the infinity norm of inverse of $ SDD_1 $ matrices and $ SDD $ matrices are given. Moreover, we show that these new bounds of $ SDD $ matrices are better than the well-known Varah bound for $ SDD $ matrices in some cases. In addition, some numerical examples are given to illustrate the corresponding results.
Citation: Xiaoyong Chen, Yating Li, Liang Liu, Yaqiang Wang. Infinity norm upper bounds for the inverse of $ SDD_1 $ matrices[J]. AIMS Mathematics, 2022, 7(5): 8847-8860. doi: 10.3934/math.2022493
In this paper, a new proof that $ SDD_1 $ matrices is a subclass of $ H $-matrices is presented, and some properties of $ SDD_1 $ matrices are obtained. Based on the new proof, some upper bounds of the infinity norm of inverse of $ SDD_1 $ matrices and $ SDD $ matrices are given. Moreover, we show that these new bounds of $ SDD $ matrices are better than the well-known Varah bound for $ SDD $ matrices in some cases. In addition, some numerical examples are given to illustrate the corresponding results.
[1] | A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, New York: Academic Press, 1979. |
[2] | J. M. Peña, Diagonal dominance, Schur complements and some classes of $H$-matrices and $P$-matrices, Adv. Comput. Math., 35 (2011), 357–373. https://doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5 |
[3] | P. F. Dai, A note diagonal dominance, Schur complements and some classes of $H$-matrices and $P$-matrices, Adv. Comput. Math., 42 (2016), 1–4. https://doi.org/10.1007/s10444-014-9375-y doi: 10.1007/s10444-014-9375-y |
[4] | L. Y. Kolotilina, On bounding inverses to Nekrasov matrices in the infinity norm, J. Math. Sci., 199 (2014), 432–437. https://doi.org/10.1007/s10958-014-1870-7 doi: 10.1007/s10958-014-1870-7 |
[5] | L. Gao, Q. Liu, New upper bounds for the infinity norm of Nekrasov matrices, J. Math. Inequal., 14 (2020), 723–733. http://dx.doi.org/10.7153/jmi-2020-14-46 doi: 10.7153/jmi-2020-14-46 |
[6] | H. Orera, J. M. Peña, Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices, Appl. Math. Comput., 358 (2019), 119–127. https://doi.org/10.1016/j.amc.2019.04.027 doi: 10.1016/j.amc.2019.04.027 |
[7] | L. Cvetković, V. Kostić, K. Doroslovačkic, Max-norm bounds for the inverse of S-Nekrasov matrices, Appl. Math. Comput., 218 (2012), 9498–9503. https://doi.org/10.1016/j.amc.2012.03.040 doi: 10.1016/j.amc.2012.03.040 |
[8] | L. Y. Kolotilina, Bounds for the inverses of generalized Nekrasov matrices, J. Math. Sci., 207 (2015), 786–794. https://doi.org/10.1007/s10958-015-2401-x doi: 10.1007/s10958-015-2401-x |
[9] | L. Y. Kolotilina, Nekrasov type matrices and upper bounds for their inverses, J. Math. Sci., 249 (2020), 221–230. https://doi.org/10.1007/s10958-020-04936-5 doi: 10.1007/s10958-020-04936-5 |
[10] | Y. Q. Wang, L. Gao, An improvement of the infinity norm bound for the inverse of $\{p_1, p_2\}$-Nekrasov matrices, J. Inequal. Appl., 2019 (2019), 177. https://doi.org/10.1186/s13660-019-2134-3 doi: 10.1186/s13660-019-2134-3 |
[11] | C. L. Li, L. Cvetković, Y. M. Wei, J. X. Zhao, An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications, Linear Algebra Appl., 565 (2019), 99–122. https://doi.org/10.1016/j.laa.2018.12.013 doi: 10.1016/j.laa.2018.12.013 |
[12] | L. Y. Kolotilina, On Dashnic-Zusmanovich (DZ) and Dashnic-Zusmanovich type (DZT) matrices and their inverses, J. Math. Sci., 240 (2019), 799–812. https://doi.org/10.1007/s10958-019-04397-5 doi: 10.1007/s10958-019-04397-5 |
[13] | N. Morača, Upper bounds for the infinity norm of the inverse of $SDD$ and $S$-$SDD$ matrices, J. Comput. Appl. Math., 206 (2007), 666–678. https://doi.org/10.1016/j.cam.2006.08.013 doi: 10.1016/j.cam.2006.08.013 |
[14] | L. Y. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, J. Math. Sci., 249 (2020), 242–255. https://doi.org/10.1007/s10958-020-04938-3 doi: 10.1007/s10958-020-04938-3 |
[15] | X. Y. Chen, Y. Q. Wang, Subdirect sums of $SDD_1$ matrices, J. Math., 2020 (2020), 3810423. https://doi.org/10.1155/2020/3810423 doi: 10.1155/2020/3810423 |