The aim of this manuscript is to prove some fixed point results for non-linear set-valued maps with new approach of $ \left(\alpha _{\ast }, \phi _{M}\right) $-contraction in complete $ M $-metric space. Also, we prove some fixed point results in ordered $ M $-metric space. As an presented work which are the extension and improves the current study of set-valued mappings. Finally, we also give an non-trivial extensive examples and application to homotopy theory and the existence solution of functional equations to show that our concepts are meaningful and to support our results.
Citation: Muhammad Tariq, Mujahid Abbas, Aftab Hussain, Muhammad Arshad, Amjad Ali, Hamid Al-Sulami. Fixed points of non-linear set-valued $ \left(\alpha _{\ast }, \phi _{M}\right) $-contraction mappings and related applications[J]. AIMS Mathematics, 2022, 7(5): 8861-8878. doi: 10.3934/math.2022494
The aim of this manuscript is to prove some fixed point results for non-linear set-valued maps with new approach of $ \left(\alpha _{\ast }, \phi _{M}\right) $-contraction in complete $ M $-metric space. Also, we prove some fixed point results in ordered $ M $-metric space. As an presented work which are the extension and improves the current study of set-valued mappings. Finally, we also give an non-trivial extensive examples and application to homotopy theory and the existence solution of functional equations to show that our concepts are meaningful and to support our results.
[1] | K. Abodayeh, N. Mlaiki, T. Abdeljawad, W. Shatanawi, Relations between partial metric spaces and M-metric spaces, Caristi Kirk's theorem in $M$-metric type spaces. J. Math. Anal., 7 (2016), 1–12. |
[2] | M. Arshad, A. Hussain, A. Azam, Fixed point of $\alpha $ -Geraghty contraction with applications, U. P. B. Bull. Sci., 79 (2016), 67–78. |
[3] | M. Asadi, M. Azhini, E. Karapinar, H. Monfared, Simulation functions over $M$-metric spaces, East Asian Math. J., 33 (2017), 559–570. https://doi.org/10.7858/eamj.2017.039 doi: 10.7858/eamj.2017.039 |
[4] | M. Asadi, E. Karapinar, P. Salimi, New extension of $p$-metric spaces with fixed points results on $M$-metric spaces, J. Inequal. Appl., 18 (2014), 2014. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18 |
[5] | H. Aydi, M. Abbas, C. Vetro, Partial hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. https://doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012 |
[6] | M. Abbas, H. Iqbal, A. Petrusel, Fixed points for multivalued Suzuki type $\left(\theta -R\right) $-contraction mapping with applications, J. Funct. Space., 2019, 1–13. https://doi.org/10.1155/2019/9565804 |
[7] | M. U. Ali, T. Kamran, E. Karapınar, Discussion on $\alpha $ -strictly contractive nonself multivalued maps, Vietnam J. Math., 44 (2016), 441–447. https://doi.org/10.1007/s10013-016-0191-1 doi: 10.1007/s10013-016-0191-1 |
[8] | M. U. Ali, T. Kamran, E. Karapınar, New approach to $\left(\alpha, \psi \right) $-contractive nonself multivalued mappings, J. Inequal. Appl., 2014. https://doi.org/10.1186/1029-242X-2014-71 |
[9] | A. Ali, M. Arshad1, A. Asif, E. Savas, C. Park, D. Y. Shin, On multivalued maps for $\varphi $-contractions involving orbits with application, AIMS Math., 6 (2021), 7532–7554 |
[10] | M. U. Ali, T. Kamran, E. Karapınar, Fixed point of $ \left(\alpha, \psi \right) $-contractive type mappings in uniform space, J. Inequal. Appl., 2014. https://doi.org/10.1186/1687-1812-2014-150 |
[11] | M. U. Ali, T. Kamran, E. Karapınar, An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstr. Appl. Anal., 2014. https://doi.org/10.1155/2014/141489 |
[12] | A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Physica A., 2020,538. |
[13] | R. P. Agarwal, U. Aksoy, E. Karapınar, L. M. Erhan, $F$ -contraction type mappings on metric like spaces in conection with integral equation on time scale, RACAM, 2020. https://doi.org/10.1007/s13398-020-00877-5 |
[14] | A. Ali, H. Işık, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued $\theta $-contraction maps and related applications, Open Math., 2020, 1–14. |
[15] | S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math., 3 (1922), 133–181. |
[16] | I. Beg, A. R. Butt, Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces, Math. Commun., 15 (2010), 65–76. |
[17] | L. Budhia, H. Aydib, A. H. Ansarid, D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.- Model., 25 (2020). https://doi.org/10.15388/namc.2020.25.17928 |
[18] | K. P. Chi, E. Karapınar, T. D. Thanh, A generalized contraction principle in partial metric spaces, Math. Comput. Model., 55 (2012), 1673–1681. https://doi.org/10.1016/j.mcm.2011.11.005 doi: 10.1016/j.mcm.2011.11.005 |
[19] | D. Gopal, M. Abbas, D. K. Patel, Fixed points of $\alpha $ -type $F$-contractive mapping with an application to nonlinear fractional differential equation, Acta Math. Sci., 36 (2016), 957–970. https://doi.org/10.1016/S0252-9602(16)30052-2 doi: 10.1016/S0252-9602(16)30052-2 |
[20] | S. Gulyaz, E. Karapınar, V. Rakocevic, P. Salimi, Existence of a solution of integral equation via fixed point theorem, J. Inequal. Appl., 2013. |
[21] | D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955–967. https://doi.org/10.1186/1029-242X-2013-529 doi: 10.1186/1029-242X-2013-529 |
[22] | A. Hussain, Solution of fractional differentional equations utilizing symmetric contraction, J. Math., 22 (2021), 17. https://doi.org/10.1155/2021/5510971 doi: 10.1155/2021/5510971 |
[23] | E. Karapinar, S. Moustafa, R. P. Agarwal, Fractional hybrid differential equations and coupled fixed point results for $\alpha $ -Admissible $F(\psi _{1}, \psi _{2})$-contractions in $M$-metric spaces, Discrete Dyn. Nat. Soc., 13 (2020). https://doi.org/10.1155/2020/7126045 |
[24] | E. Karapınar, M. Abbas, S. Farooq, A discussion on the existence of best proximity points that belong to the zero set, Axioms, 9 (2020), 19. https://doi.org/10.3390/axioms9010019 doi: 10.3390/axioms9010019 |
[25] | H. Lakzian, D. Gopal, W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fix. Point Theory A., 18 (2016), 251–266. https://doi.org/10.1007/S11784-015-0275-7 doi: 10.1007/S11784-015-0275-7 |
[26] | S. G. Matthews, Partial metric topology, Proc. 8th summer conference on general topology and applications, New York Acad. Sci., 728 (1994), 183–197. |
[27] | H. Monfared, M. Azhini, M. Asadi, Fixed point results on $M$-metric spaces, J. Math. Anal., 7 (2016), 85–101. |
[28] | S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475 |
[29] | G. A. Okeke, S. H. Khan, Approximation of fixed point of multivalued $\rho $-quasi contractive mappings in modular function spaces, Arab J. Math. Sci., 26 (2020), 7–93. https://doi.org/10.1186/1687-1812-2014-34 doi: 10.1186/1687-1812-2014-34 |
[30] | G. A. Okeke, J. O. Olaleru, Fixed points of demicontinuous $\phi $-nearly Lipschtzian mappings in Banach Spaces, Thai J. Math., 17 (2019) 141–154. |
[31] | P. R. Patle, D. K. Patel, H. Aydi, D. Gopal, N. Mlaiki, Nadler and Kannan type set valued mappings in M-metric spaces and an application, Mathematics, 7 (2019), 373. https://doi.org/10.3390/math7040373 doi: 10.3390/math7040373 |
[32] | A. Padcharoen, D. Gopa, P. Chaipunya, P. Kumam, Fixed point and periodic point results for $\alpha $-type $F$-contractions in modular metric spaces, Fixed Point Theory A., 1 (2016), 1–12. https://doi.org/10.1186/s13663-016-0525-4 doi: 10.1186/s13663-016-0525-4 |
[33] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for$ \left(\alpha, \psi \right) $-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1155/2014/869123 doi: 10.1155/2014/869123 |
[34] | O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2005), 229–240. https://doi.org/10.4995/agt.2005.1957 doi: 10.4995/agt.2005.1957 |
[35] | C. Vetro, F. Vetro, A homotopy fixed point theorem in $0$ -complete partial metric space, Filomat, 29 (2015), 2037–2048. https://doi.org/10.2298/FIL1509037V doi: 10.2298/FIL1509037V |