Research article

Hybrid pair of multivalued mappings in modular-like metric spaces and applications

  • Received: 17 January 2022 Revised: 21 March 2022 Accepted: 24 March 2022 Published: 29 March 2022
  • MSC : 46Txx, 47H04, 47H10, 54H25

  • Our aim is to prove some new fixed point theorems for a hybrid pair of multivalued $ \alpha _{\ast } $-dominated mappings involving a generalized $ Q $-contraction in a complete modular-like metric space. Further results involving graphic contractions for a pair of multi-graph dominated mappings have been considered. Applying our obtained results, we resolve a system of nonlinear integral equations.

    Citation: Tahair Rasham, Muhammad Nazam, Hassen Aydi, Abdullah Shoaib, Choonkil Park, Jung Rye Lee. Hybrid pair of multivalued mappings in modular-like metric spaces and applications[J]. AIMS Mathematics, 2022, 7(6): 10582-10595. doi: 10.3934/math.2022590

    Related Papers:

  • Our aim is to prove some new fixed point theorems for a hybrid pair of multivalued $ \alpha _{\ast } $-dominated mappings involving a generalized $ Q $-contraction in a complete modular-like metric space. Further results involving graphic contractions for a pair of multi-graph dominated mappings have been considered. Applying our obtained results, we resolve a system of nonlinear integral equations.



    加载中


    [1] A. A. N. Abdou, M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory A., 2013 (2013), 163. https://doi.org/10.1186/1687-1812-2013-163 doi: 10.1186/1687-1812-2013-163
    [2] A. A. N. Abdou, M. A. Khamsi, Fixed points of multivalued contraction mappings in modular metric spaces, Fixed Point Theory A., 2014 (2014), 249. https://doi.org/10.1186/1687-1812-2014-249 doi: 10.1186/1687-1812-2014-249
    [3] Ö. Acar, G. Durmaz, G. Minak, Generalized multivalued $F$-contractions on complete metric spaces, B. Iran. Math. Soc., 40 (2014), 1469–1478.
    [4] M. R. Alfuraidan, The contraction principle for multivalued mappings on a modular metric space with a graph, Can. Math. Bull., 59 (2016), 3–12. https://doi.org/10.4153/CMB-2015-029-x. doi: 10.4153/CMB-2015-029-x
    [5] I. Altun, H. Sahin, M. Aslantas, A new approach to fractals via best proximity point, Chaos Soliton. Fract., 146 (2021), 110850. https://doi.org/10.1016/j.chaos.2021.110850 doi: 10.1016/j.chaos.2021.110850
    [6] M. Aslantas, H. Sahin, I. Altun, Best proximity point theorems for cyclic $p$-contractions with some consequences and applications, Nonlinear Anal.-Model., 26 (2021), 113–129. https://doi.org/10.15388/namc.2021.26.21415 doi: 10.15388/namc.2021.26.21415
    [7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux éequations intégrales, Fund. Math., 3 (1922), 133–181.
    [8] L. C. Ceng, Q. H. Ansari, J. C. Yao, Strong and weak convergence theorems for asymptotically strict pseudocontractive mappings in intermediate sense, J. Nonlinear Convex A., 11 (2010), 283–308.
    [9] L. C. Ceng, A. Petrusel, Krasnoselski-Mann iterations for hierarchical fixed point problems for a finite family of nonself mappings in Banach spaces, J. Optimiz. Theory App., 146 (2010), 617–639. https://doi.org/10.1007/s10957-010-9679-0 doi: 10.1007/s10957-010-9679-0
    [10] L. C. Ceng, A. Petrusel, J. C. Yao, Y. Yao, Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions, Fixed Point Theor., 20 (2019), 113–133. https://doi.org/10.24193/fpt-ro.2019.1.07 doi: 10.24193/fpt-ro.2019.1.07
    [11] L. C. Ceng, H. K. Xu, J. C. Yao, Uniformly normal structure and uniformly Lipschitzian semigroups, Nonlinear Anal., 73 (2010), 3742–3750. https://doi.org/10.1016/j.na.2010.07.044 doi: 10.1016/j.na.2010.07.044
    [12] P. Chaipunya, C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed-point theorems for multivalued mappings in modular metric spaces, Abstr. Appl. Anal., 2012 (2012), 503504. https://doi.org/10.1155/2012/503504 doi: 10.1155/2012/503504
    [13] V. V. Chistyakov, Modular metric spaces—Ⅰ: Basic concepts, Nonlinear Anal., 72 (2010), 1–14. https://doi.org/10.1016/j.na.2009.04.057 doi: 10.1016/j.na.2009.04.057
    [14] A. H. Hammad, P. Agarwal, J. L. G. Guirao, Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces, Mathematics, 9 (2021), 16. https://doi.org/10.3390/math9162012 doi: 10.3390/math9162012
    [15] A. H. Hammad, M. De la Sen, Analytical solution of Urysohn integral equations by fixed point technique in complex valued metric spaces, Mathematics, 7 (2019), 852. https://doi.org/10.3390/math7090852 doi: 10.3390/math7090852
    [16] A. H. Hammad, M. De la Sen, Fixed point results for a generalized almost $(s, q)$-Jaggi $F$-contraction-type on $b$-metric-like spaces, Mathematics, 8 (2020), 63. https://doi.org/10.3390/math8010063 doi: 10.3390/math8010063
    [17] A. Hussain, M. Arshad, M. Nazim, Connection of Ciric type $ F$-contraction involving fixed point on closed ball, Gazi. Univ. J. Sci., 30 (2017), 283–291.
    [18] N. Hussain, S. Al-Mezel, P. Salimi, Fixed points for $\psi$-graphic contractions with application to integral equations, Abstr. Appl. Anal., 2013 (2013), 575869. https://doi.org/10.1155/2013/575869 doi: 10.1155/2013/575869
    [19] N. Hussain, A. Latif, I. Iqbal, Fixed point results for generalized $F$-contractions in modular metric and fuzzy metric spaces, Fixed Point Theory A., 2015 (2015), 158. https://doi.org/10.1186/s13663-015-0407-1 doi: 10.1186/s13663-015-0407-1
    [20] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc., 136 (2008), 1359–1373.
    [21] C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory A., 2011 (2011), 93. https://doi.org/10.1186/1687-1812-2011-93 doi: 10.1186/1687-1812-2011-93
    [22] A. Padcharoen, D. Gopal, P. Chaipunya, P. Kumam, Fixed point and periodic point results for $\alpha $-type $F$-contractions in modular metric spaces, Fixed Point Theory A., 2016 (2016), 39. https://doi.org/10.1186/s13663-016-0525-4 doi: 10.1186/s13663-016-0525-4
    [23] S. K. Panda, T. Abdeljawad, K. K. Swamy, New numerical scheme for solving integral equations via fixed point method using distinct $(\omega -F)$-contractions, Alex. Eng. J., 59 (2020), 2015–2026. https://doi.org/10.1016/j.aej.2019.12.034 doi: 10.1016/j.aej.2019.12.034
    [24] T. Rasham, A. Shoaib, B. A. S. Alamri, M. Arshad, Multivalued fixed point results for new generalized $F$-dominated contractive mappings on dislocated metric space with application, J. Funct. Space., 2018 (2018), 4808764. https://doi.org/10.1155/2018/4808764 doi: 10.1155/2018/4808764
    [25] T. Rasham, A. Shoaib, C. Park, R. P. Agarwal, H. Aydi, On a pair of fuzzy mappings in modular-like metric spaces with applications, Adv. Differ. Equ., 2021 (2021), 245. https://doi.org/10.1186/s13662-021-03398-6 doi: 10.1186/s13662-021-03398-6
    [26] T. Rasham, A. Shoaib, C. Park, M. De la Sen, H. Aydi, J. Lee, Multivalued fixed point results for two families of mappings in modular-like metric spaces with applications, Complexity, 2020 (2020), 2690452. https://doi.org/10.1155/2020/2690452 doi: 10.1155/2020/2690452
    [27] H. Sahin, M. Aslantas, I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fix. Point Theory A., 22 (2020), 11. https://doi.org/10.1007/s11784-019-0740-9 doi: 10.1007/s11784-019-0740-9
    [28] A. Shoaib, A. Hussain, M. Arshad, A. Azam, Fixed point results for $\alpha _{\ast }$-$\psi $-Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph, J. Math. Anal., 7 (2016), 41–50.
    [29] A. Shoaib, T. Rasham, N. Hussain, M. Arshad, $\alpha _{\ast }$-dominated set-valued mappings and some generalised fixed point results, J. Natl. Sci. Found. Sri, 47 (2019), 235–243.
    [30] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory A., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [31] W. K. Williams, V. Vijayakumar, U. Ramalingam, S. K. Panda, K. S. Nisar, Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order $1 < r < 2, $ Numer. Meth. Part. D. E., In press. https://doi.org/10.1002/num.22697
    [32] M. Younis, D. Singh, I. Altun, V. Chauhan, Graphical structure of extended $b$-metric spaces: An application to the transverse oscillations of a homogeneous bar, Int. J. Nonlin. Sci. Num., In press.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1784) PDF downloads(73) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog