Research article Special Issues

Fixed points of non-linear multivalued graphic contractions with applications

  • Received: 13 April 2022 Revised: 24 August 2022 Accepted: 31 August 2022 Published: 14 September 2022
  • MSC : 47H10, 54H25, 47H04

  • In this paper, a novel and more general type of sequence of non-linear multivalued mappings as well as the corresponding contractions on a metric space equipped with a graph is initiated. Fixed point results of a single-valued mapping and the new sequence of multivalued mappings are examined under suitable conditions. A non-trivial comparative illustration is provided to support the assumptions of our main theorem. A few important results in $ \epsilon $-chainable metric space and cyclic contractions are deduced as some consequences of the concepts obtained herein. As a result of our findings, new criteria for solving a broader form of Fredholm integral equation are established. An open problem concerning discretized population balance model whose solution may be investigated using any of the ideas proposed in this note is highlighted as a future assignment.

    Citation: Mohammed Shehu Shagari, Trad Alotaibi, Hassen Aydi, Choonkil Park. Fixed points of non-linear multivalued graphic contractions with applications[J]. AIMS Mathematics, 2022, 7(11): 20164-20177. doi: 10.3934/math.20221103

    Related Papers:

  • In this paper, a novel and more general type of sequence of non-linear multivalued mappings as well as the corresponding contractions on a metric space equipped with a graph is initiated. Fixed point results of a single-valued mapping and the new sequence of multivalued mappings are examined under suitable conditions. A non-trivial comparative illustration is provided to support the assumptions of our main theorem. A few important results in $ \epsilon $-chainable metric space and cyclic contractions are deduced as some consequences of the concepts obtained herein. As a result of our findings, new criteria for solving a broader form of Fredholm integral equation are established. An open problem concerning discretized population balance model whose solution may be investigated using any of the ideas proposed in this note is highlighted as a future assignment.



    加载中


    [1] T. Abdeljawad, R. P. Agarwal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686. https://doi.org/10.3390/sym11050686 doi: 10.3390/sym11050686
    [2] N. A. Assad, W. A. Kirk, Fixed point theorems for set valued mappings of contractive type, Pac. J. Math., 43 (1972), 533–562. https://doi.org/10.2140/pjm.1972.43.553 doi: 10.2140/pjm.1972.43.553
    [3] A. Azam, M. Arshad, Fixed points of a sequence of locally contractive multivalued maps, Comput. Math. Appl., 57 (2009), 96–100. https://doi.org/10.1016/j.camwa.2008.09.039 doi: 10.1016/j.camwa.2008.09.039
    [4] I. Beg, A. R. Butt, Fixed point of set-valued graph contractive mappings, J. Ineq. Appl., 2013,252. https://doi.org/10.1186/1029-242X-2013-252
    [5] M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782. https://doi.org/10.1016/j.jmaa.2006.03.016 doi: 10.1016/j.jmaa.2006.03.016
    [6] M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12 (1961), 7–10. https://doi.org/10.1090/S0002-9939-1961-0120625-6 doi: 10.1090/S0002-9939-1961-0120625-6
    [7] T. Hu, Fixed point theorems for multi-valued mappings, Canadian Math. Bul., 23 (1980), 193–197. https://doi.org/10.4153/CMB-1980-026-2 doi: 10.4153/CMB-1980-026-2
    [8] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1
    [9] R. Johnsonbaugh, Discrete Mathematics; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1997.
    [10] M. M. Khater, M. S. Mohamed, R. A. Attia, On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equation, Chaos. Soliton. Fract., 144 (2021), 110676. https://doi.org/10.1016/j.chaos.2021.110676 doi: 10.1016/j.chaos.2021.110676
    [11] M. M. Khater, A. A. Mousa, M. A. El-Shorbagy, R. A. Attia, Analytical and semi-analytical solutions for Phi-four equation through three recent schemes, Results Phys., 22 (2021), 103954. https://doi.org/10.1016/j.rinp.2021.103954 doi: 10.1016/j.rinp.2021.103954
    [12] M. M. Khater, S. A. Salama, Plenty of analytical and semi-analytical wave solutions of shallow water beneath gravity, J. Ocean Eng. Sci., 7 (2022), 237–243. https://doi.org/10.1016/j.joes.2021.08.004 doi: 10.1016/j.joes.2021.08.004
    [13] M. M. Khater, A. M. Alabdali, Multiple novels and accurate traveling wave and numerical solutions of the (2+1) dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation, Mathematics, 9 (2021), 1440. https://doi.org/10.3390/math9121440 doi: 10.3390/math9121440
    [14] M. M. Khater, D. Lu, Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation, Mod. Phys. Lett. B, 35 (2021), 2150324. https://doi.org/10.1142/S0217984921503243 doi: 10.1142/S0217984921503243
    [15] W. A. Kirk, P. S. Srinivasan, P. Veeranmani, Fixed points for mappings obeying cyclical contractive condition, Fixed Point Theory, 41 (2003), 79–89.
    [16] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188. https://doi.org/10.1002/mana.19891410119 doi: 10.1002/mana.19891410119
    [17] N. A. K. Muhammad, A. Akbar, M. Nayyar, Coincidence points of a sequence of multivalued mappings in metric space with a graph, Mathematics, 5 (2017), 30. https://doi.org/10.3390/math5020030 doi: 10.3390/math5020030
    [18] B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475
    [19] M. Pacurar, I. A. Rus, Fixed point theory for cyclic $\varphi$-contractions, Nonlinear. Anal.-Theor., 72 (2010), 1181–1187. https://doi.org/10.1016/j.na.2009.08.002 doi: 10.1016/j.na.2009.08.002
    [20] S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos, Soliton. Fract., 130 (2020), 109439. https://doi.org/10.1016/j.chaos.2019.109439 doi: 10.1016/j.chaos.2019.109439
    [21] S. K. Panda, T. Abdeljawad, C. Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and Lp-Fredholm integral equations, Alex. Eng. J., 59 (2020), 1959–1970. https://doi.org/10.1016/j.aej.2019.12.027 doi: 10.1016/j.aej.2019.12.027
    [22] S. K. Panda, E. Karapınar, A. Atangana, A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocatedextendedb-metricspace, Alex. Eng. J., 59 (2020), 815–827. https://doi.org/10.1016/j.aej.2020.02.007 doi: 10.1016/j.aej.2020.02.007
    [23] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 3 (2005), 223–239. https://doi.org/10.1007/s11083-005-9018-5 doi: 10.1007/s11083-005-9018-5
    [24] S. Phikul, S. Suthep, Common fixed point theorems for multivalued weak contractive mappings in metric spaces with graphs, Filomat, 32 (2018), 671–680. https://doi.org/10.2298/FIL1802671S doi: 10.2298/FIL1802671S
    [25] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 3 (2004), 1435–1443. https://doi.org/10.1090/S0002-9939-03-07220-4 doi: 10.1090/S0002-9939-03-07220-4
    [26] S. Reich, Fixed points of contractive functions, Boll. Unione. Mat. Ital., 5 (1972), 26–42.
    [27] I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japonica, 20 (1975), 21–24.
    [28] M. Younis, D. Singh, S. Radenović, M. Imdad, Convergence theorems for generalized contractions and applications, Filomat, 34 (2020), 945–964. https://doi.org/10.2298/FIL2003945Y doi: 10.2298/FIL2003945Y
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1146) PDF downloads(56) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog