Research article

Positive solutions for a system of Hadamard fractional $ (\varrho_{1}, \varrho_{2}, \varrho_{3}) $-Laplacian operator with a parameter in the boundary

  • Received: 08 November 2021 Revised: 30 January 2022 Accepted: 06 March 2022 Published: 29 March 2022
  • MSC : 34A08, 34B15, 34B18, 34B27

  • In this paper, we are gratified to explore existence of positive solutions for a tripled nonlinear Hadamard fractional differential system with $ (\varrho_{1}, \varrho_{2}, \varrho_{3}) $-Laplacian operator in terms of the parameter $ (\sigma_{1}, \sigma_{2}, \sigma_{3}) $ are obtained, by applying Avery-Henderson and Leggett-Williams fixed point theorems. As an application, an example is given to illustrate the effectiveness of the main result.

    Citation: Ahmed Hussein Msmali. Positive solutions for a system of Hadamard fractional $ (\varrho_{1}, \varrho_{2}, \varrho_{3}) $-Laplacian operator with a parameter in the boundary[J]. AIMS Mathematics, 2022, 7(6): 10564-10581. doi: 10.3934/math.2022589

    Related Papers:

  • In this paper, we are gratified to explore existence of positive solutions for a tripled nonlinear Hadamard fractional differential system with $ (\varrho_{1}, \varrho_{2}, \varrho_{3}) $-Laplacian operator in terms of the parameter $ (\sigma_{1}, \sigma_{2}, \sigma_{3}) $ are obtained, by applying Avery-Henderson and Leggett-Williams fixed point theorems. As an application, an example is given to illustrate the effectiveness of the main result.



    加载中


    [1] T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics, New York: Wiley, 2014. http://dx.doi.org/10.1002/9781118577530
    [2] A. Arafa, S. Rida, M. Khalil, Fractional modeling dynamics of HIV and CD$4^{+}$ T-cells during primary infection, Nonlinear Biomed. Phys., 6 (2012), 1. http://dx.doi.org/10.1186/1753-4631-6-1 doi: 10.1186/1753-4631-6-1
    [3] S. Aljoudi, B. Ahmad, J. Nieto, A. Alsaedi, On coupled Hadamard type sequential fractional differential equations with variable coefficients and nonlocal integral boundary conditions, Filomat, 31 (2017), 6041–6049. http://dx.doi.org/10.2298/FIL1719041A doi: 10.2298/FIL1719041A
    [4] S. Aljoudi, B. Ahmad, J. Nieto, A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Soliton. Fract., 91 (2016), 39–46. http://dx.doi.org/10.1016/j.chaos.2016.05.005 doi: 10.1016/j.chaos.2016.05.005
    [5] B. Ahmad, S. Ntouyas, A. Alsaedi, A. Albideewi, A study of a coupled system of Hadamard fractional differential equations with nonlocal coupled initial-multipoint conditions, Adv. Differ. Equ., 2021 (2021), 33. http://dx.doi.org/10.1186/s13662-020-03198-4 doi: 10.1186/s13662-020-03198-4
    [6] R. Avery, J. Henderson, Two positive fixed points of nonlinear operators on ordered Banach spaces, Communications on Applied Nonlinear Analysis, 8 (2001), 27–36.
    [7] Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD$4^{+}$ T-cells, Math. Comput. Model., 50 (2009), 386–392. http://dx.doi.org/10.1016/j.mcm.2009.04.019 doi: 10.1016/j.mcm.2009.04.019
    [8] R. Garra, E. Orsingher, F. Polito, A note on Hadamard fractional differential equations with varying coefficients and their applications in probability, Mathematics, 6 (2018), 4. http://dx.doi.org/10.3390/math6010004 doi: 10.3390/math6010004
    [9] J. Henderson, R. Luca, A. Tudorache, Existence and nonexistence of positive solutions for coupled Riemann-Liouville fractional boundary value problems, Discrete Dyn. Nat. Soc., 2016 (2016), 2823971. http://dx.doi.org/10.1155/2016/2823971 doi: 10.1155/2016/2823971
    [10] J. Henderson, R. Luca, Boundary value problems for systems of differential, difference and fractional equations: positive solutions, Amsterdam: Elsevier, 2016.
    [11] J. Henderson, R. Luca, Systems of Riemann-Liouville fractional equations with multi-point boundary conditions, Appl. Math. Comput., 309 (2017), 303–323. http://dx.doi.org/10.1016/j.amc.2017.03.044 doi: 10.1016/j.amc.2017.03.044
    [12] R. Hilfer, Applications of fractional calculus in physics, New Jersey: World Scientific, 2000. http://dx.doi.org/10.1142/3779
    [13] W. Han, J. Jiang, Existence and mutiplicity of positive solutions for a system of nonlinear fractional multi-point boundary velua problems with $p$-Laplacian operator, J. Appl. Anal. Comput., 11 (2021), 351–366. http://dx.doi.org/10.11948/20200021 doi: 10.11948/20200021
    [14] Z. Han, H. Lu, S. Sun, Positive solutions to boundary-value problems of $p$-Laplacian fractional differential equations with a parameter in the boundary, Electron. J. Differ. Equ., 2012 (2012), 1–14.
    [15] H. Huang, W. Liu, Positive solutions for a class of nonlinear Hadamard fractional differential equations with a parameter, Adv. Differ. Equ., 2018 (2018), 96. http://dx.doi.org/10.1186/s13662-018-1551-9 doi: 10.1186/s13662-018-1551-9
    [16] S. Hamani, W. Benhamida, J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Advances in the Theory of Nonlinear Analysis and its Application, 2 (2018), 138–145. http://dx.doi.org/10.31197/atnaa.419517 doi: 10.31197/atnaa.419517
    [17] J. Jiang, D. O'Regan, J. Xu, Y. Cui, Positive solutions for a Hadamard fractional $p$-Laplacian three-point boundary value problem, Mathematics, 7 (2019), 439. http://dx.doi.org/10.3390/math7050439
    [18] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. http://dx.doi.org/10.1016/S0304-0208(06)80001-0
    [19] L. Kong, D. Piao, L. Wang, Positive solutions for third boundary value problems with $p$-Laplacian, Results Math., 55 (2009), 111–128. http://dx.doi.org/10.1007/s00025-009-0383-z doi: 10.1007/s00025-009-0383-z
    [20] R. Leggett, L. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673–688. http://dx.doi.org/10.1512/iumj.1979.28.28046 doi: 10.1512/iumj.1979.28.28046
    [21] Z. Lv, J. Liu, J. Xu, Multiple positive solutions for a system of Caputo fractional $p$-Laplacian boundary value problems, Complexity, 2020 (2020), 6723791. http://dx.doi.org/10.1155/2020/6723791 doi: 10.1155/2020/6723791
    [22] R. Luca, Positive solutions for a system of fractional differential equations with $p$-Laplacian operator and multi-point boundary conditions, Nonlinear Anal.-Model., 23 (2018), 771–801. http://dx.doi.org/10.15388/NA.2018.5.8 doi: 10.15388/NA.2018.5.8
    [23] R. Luca, On a system of fractional boundary value problems with $p$-Laplacian operator, Dynam. Syst. Appl., 28 (2019), 691–713. http://dx.doi.org/10.12732/dsa.v28i3.10 doi: 10.12732/dsa.v28i3.10
    [24] Y. Li, Multiple positive solutions for nonlinear mixed fractional differential equation with $p$-Laplacian operator, Adv. Differ. Equ., 2019 (2019), 112. http://dx.doi.org/10.1186/s13662-019-2041-4 doi: 10.1186/s13662-019-2041-4
    [25] D. Li, Y. Liu, C. Wang, Multiple positive solutions for fractional three-point boundary value problem with $p$-Laplacian operator, Math. Probl. Eng., 2020 (2020), 2327580. http://dx.doi.org/10.1155/2020/2327580 doi: 10.1155/2020/2327580
    [26] Y. Liu, D. Xie, C. Bai, D. Yang, Multiple positive solutions for a coupled system of fractional multi-point BVP with $p$-Laplacian operator, Adv. Differ. Equ., 2017 (2017), 168. http://dx.doi.org/10.1186/s13662-017-1221-3 doi: 10.1186/s13662-017-1221-3
    [27] K. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [28] Y. Povstenko, Fractional thermoelasticity, New York: Springer, 2015. http://dx.doi.org/10.1007/978-3-319-15335-3
    [29] T. Qi, Y. Liu, Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Space., 2017 (2017), 6703860. http://dx.doi.org/10.1155/2017/6703860 doi: 10.1155/2017/6703860
    [30] S. Rao, Multiplicity of positive solutions for fractional differential equation with $p$-Laplacian boundary value problem, Int. J. Differ. Equ., 2016 (2016), 6906049. http://dx.doi.org/10.1155/2016/6906049 doi: 10.1155/2016/6906049
    [31] S. Rao, M. Zico, Positive solutions for a coupled system of nonlinear semipositone fractional boundary value problems, Int. J. Differ. Equ., 2019 (2019), 2893857. http://dx.doi.org/10.1155/2019/2893857 doi: 10.1155/2019/2893857
    [32] S. Rao, Multiple positive solutions for coupled system of $p$-Laplacian fractional order three-point boundary value problems, Rocky Mountain J. Math., 49 (2019), 609–626. http://dx.doi.org/10.1216/RMJ-2019-49-2-609 doi: 10.1216/RMJ-2019-49-2-609
    [33] V. Raju, B. Krushna, On a coupled sytem of fractional order differential equations with Riemann-Liouville type boundary conditions, J. Nonlinear Funct. Anal., 2018 (2018), 25. http://dx.doi.org/10.23952/jnfa.2018.25 doi: 10.23952/jnfa.2018.25
    [34] S. Rao, A. Msmali, M. Singh, A. Ahmadini, Existence and uniqueness for a system of Caputo-Hadamard fractional differential equations with multi-point boundary conditions, J. Funct. Space., 2020 (2020), 8821471. http://dx.doi.org/10.1155/2020/8821471 doi: 10.1155/2020/8821471
    [35] S. Rao, A. Ahmadini, Multiple positive solutions for a system of $(p_1, p_2, p_3)$-Laplacian Hadamard fractional order BVP with parameters, Adv. Differ. Equ., 2021 (2021), 436. http://dx.doi.org/10.1186/s13662-021-03591-7 doi: 10.1186/s13662-021-03591-7
    [36] S. Rao, M. Singh, M. Meetei, Multiplicity of positive solutions for Hadamard fractional differential equations with $p$-Laplacian operator, Bound. Value Probl., 2020 (2020), 43. http://dx.doi.org/10.1186/s13661-020-01341-4 doi: 10.1186/s13661-020-01341-4
    [37] R. Saxena, R. Garra, E. Orsingher, Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives, Integr. Transf. Spec. F., 27 (2016), 30–42. http://dx.doi.org/10.1080/10652469.2015.1092142 doi: 10.1080/10652469.2015.1092142
    [38] A. Tudorache, R. Luca, Positive solutions for a system of Riemann-Liouville fractional boundary value problems with $p$-Laplacian operators, Adv. Differ. Equ., 2020 (2020), 292. http://dx.doi.org/10.1186/s13662-020-02750-6 doi: 10.1186/s13662-020-02750-6
    [39] G. Wang, T. Wang, On a nonlinear Hadamard type fractional differential equation with $p$-Laplacian operator and strip condition, J. Nonlinear Sci. Appl., 9, (2016), 5073–5081. http://dx.doi.org/10.22436/jnsa.009.07.10
    [40] J. Xu, J. Jiang, D. O'Regan, Positive solutions for a class of $p$-Laplacian Hadamard fractional order three point boundary value problems, Mathematics, 8 (2020), 308. http://dx.doi.org/10.3390/math8030308 doi: 10.3390/math8030308
    [41] W. Yang, Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., 8 (2015), 110–129. http://dx.doi.org/10.22436/jnsa.008.02.04 doi: 10.22436/jnsa.008.02.04
    [42] C. Zhai, W. Wang, Solution for a system of Hadamard fractional differential equations with integral conditions, Numer. Func. Anal. Opt., 41 (2020), 209–229. http://dx.doi.org/10.1080/01630563.2019.1620771 doi: 10.1080/01630563.2019.1620771
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1334) PDF downloads(86) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog