In this paper, we consider the existence and multiplicity of normalized solutions to the following pseudo-relativistic Schrödinger equations
$ \begin{equation*} \left\{ \begin{array}{lll} \sqrt{-\Delta+m^2}u +\lambda u = \vartheta |u|^{p-2}v +|u|^{2^\sharp-2}v, & x\in \mathbb{R}^N, \ u>0, \\ \ \int_{{\mathbb{R}^N}}|u|^2dx = a^2, \end{array} \right. \end{equation*} $
where $ N\geq2, $ $ a, \vartheta, m > 0, $ $ \lambda $ is a real Lagrange parameter, $ 2 < p < 2^\sharp = \frac{2N}{N-1} $ and $ 2^\sharp $ is the critical Sobolev exponent. The operator $ \sqrt{-\Delta+m^2} $ is the fractional relativistic Schrödinger operator. Under appropriate assumptions, with the aid of truncation technique, concentration-compactness principle and genus theory, we show the existence and the multiplicity of normalized solutions for the above problem.
Citation: Xueqi Sun, Yongqiang Fu, Sihua Liang. Normalized solutions for pseudo-relativistic Schrödinger equations[J]. Communications in Analysis and Mechanics, 2024, 16(1): 217-236. doi: 10.3934/cam.2024010
In this paper, we consider the existence and multiplicity of normalized solutions to the following pseudo-relativistic Schrödinger equations
$ \begin{equation*} \left\{ \begin{array}{lll} \sqrt{-\Delta+m^2}u +\lambda u = \vartheta |u|^{p-2}v +|u|^{2^\sharp-2}v, & x\in \mathbb{R}^N, \ u>0, \\ \ \int_{{\mathbb{R}^N}}|u|^2dx = a^2, \end{array} \right. \end{equation*} $
where $ N\geq2, $ $ a, \vartheta, m > 0, $ $ \lambda $ is a real Lagrange parameter, $ 2 < p < 2^\sharp = \frac{2N}{N-1} $ and $ 2^\sharp $ is the critical Sobolev exponent. The operator $ \sqrt{-\Delta+m^2} $ is the fractional relativistic Schrödinger operator. Under appropriate assumptions, with the aid of truncation technique, concentration-compactness principle and genus theory, we show the existence and the multiplicity of normalized solutions for the above problem.
[1] | L. Hörmander, The analysis of linear partial differential operators. III: Pseudo-differential operators, Reprint of the 1994 edition, Classics in Mathematics, Springer, Berlin, 2007. |
[2] | E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. |
[3] | M. Fall, V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827–5867. https://doi.org/10.1006/jfan.1999.3462 doi: 10.1006/jfan.1999.3462 |
[4] | N. Aronszajn, K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble), 11 (1961), 385–475. https://doi.org/10.5802/aif.116 |
[5] | A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions. Vol. II, Based on notes left by Harry Bateman, Reprint of the 1953 original, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. |
[6] | N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2 |
[7] | N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108 |
[8] | E. Lieb, H. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147–174. https://doi.org/10.1007/BF01217684 doi: 10.1007/BF01217684 |
[9] | E. Lieb, H. Yau, The stability and instability of relativistic matter, Comm. Math. Phys., 118 (1988), 177–213. https://doi.org/10.1007/BF01218577 doi: 10.1007/BF01218577 |
[10] | V. Ambrosio, Existence of heteroclinic solutions for a pseudo-relativistic Allen-Cahn type equation, Adv. Nonlinear Stud, 15 (2015), 395–414. https://doi.org/10.1515/ans-2015-0207 doi: 10.1515/ans-2015-0207 |
[11] | W. Choi, J. Seok, Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations, arXiv: 1506.00791. https://doi.org/10.1063/1.4941037 |
[12] | V. Coti Zelati, M. Nolasco, Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Rend. Lincei. Mat. Appl., 22 (2011), 51–72. https://doi.org/10.4171/RLM/587 doi: 10.4171/RLM/587 |
[13] | L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306 |
[14] | M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. |
[15] | C. Yang, C. Tang, Sign-changing solutions for the Schrödinger-Poisson system with concave-convex nonlinearities in $\mathbb{R}^N, $ Commun. Anal. Mech., 15 (2023), 638–657. https://doi.org/10.3934/cam.2023032 |
[16] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal, 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1 |
[17] | C. O. Alves, C. Ji, O. H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in $\mathbb{R}^N, $ Calc. Var. Partial Differential Equations, 61 (2022), 18. https://doi.org/10.1007/s00526-021-02123-1 |
[18] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610 |
[19] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016 |
[20] | S. Deng, Q. Wu, Existence of normalized solutions for the Schrödinger equation, Commun. Anal. Mech., 15 (2023), 575–585. https://doi.org/10.3934/cam.2023028 doi: 10.3934/cam.2023028 |
[21] | Q. Li, W. Zou, The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the $L^2$-subcritical and $L^2$-supercritical cases, Adv. Nonlinear Anal, 11 (2022), 1531–1551. https://doi.org/10.1515/anona-2022-0252 doi: 10.1515/anona-2022-0252 |
[22] | W. Wang, Q. Li, J. Zhou, Y. Li, Normalized solutions for $p$-Laplacian equations with a $L^2$-supercritical growth, Ann. Funct. Anal., 12 (2021), 1–19. https://doi.org/10.1007/s43034-020-00101-w doi: 10.1007/s43034-020-00101-w |
[23] | S. Yao, H. Chen, V.D. R$\check{a}$dulescu, J. Sun, Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation, SIAM J. Math. Anal., 54 (2022), 3696–3723. https://doi.org/10.1137/21M1463136 doi: 10.1137/21M1463136 |
[24] | L. Jeanjean, T. Luo, Z. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations, 259 (2015), 3894–3928. https://doi.org/10.1016/j.jde.2015.05.008 doi: 10.1016/j.jde.2015.05.008 |
[25] | T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math., 100 (2013), 75–83. https://doi.org/10.48550/arXiv.1209.0950 doi: 10.48550/arXiv.1209.0950 |
[26] | J. Bellazzini, L. Jeanjean, T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303–339. https://doi.org/10.1112/plms/pds072 doi: 10.1112/plms/pds072 |
[27] | X. Luo, Normalized standing waves for the Hartree equations, J. Differential Equations, 267 (2019), 4493–4524. https://doi.org/10.1016/j.jde.2019.05.009 doi: 10.1016/j.jde.2019.05.009 |
[28] | C. O. Alves, C. Ji, O. H. Miyagaki, Multiplicity of normalized solutions for a Schrödinger equation with critical in $\mathbb{R}^N, $ arXiv: 2103.07940, 2021. https://doi.org/10.48550/arXiv.2103.07940 |
[29] | A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225–236. https://doi.org/10.1016/j.jmaa.2004.03.034 doi: 10.1016/j.jmaa.2004.03.034 |
[30] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[31] | S. Dipierro, M. Medina, E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$, Scuola Normale Superiore, 2017. https://doi.org/10.1007/978-88-7642-601-8 |
[32] | C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39–71. https://doi.org/10.48550/arXiv.2105.13632 doi: 10.48550/arXiv.2105.13632 |
[33] | P. Stinga, J. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092–2122. https://doi.org/10.1080/03605301003735680 doi: 10.1080/03605301003735680 |
[34] | V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502. https://doi.org/10.1063/1.4949352 doi: 10.1063/1.4949352 |
[35] | V. Ambrosio, Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth, arXiv preprint arXiv: 2105.13632, 2021. https://doi.org/10.48550/arXiv.2105.13632 |
[36] | P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBME Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986. |
[37] | V. Bogachev, Measure Theory, Vol. II, Springer-Verlag, Berlin, 2007. |
[38] | X. Zhang, B. Zhang, D. Repovs, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal, 142 (2016), 48–68. https://doi.org/10.1016/j.na.2016.04.012 doi: 10.1016/j.na.2016.04.012 |
[39] | L. Jeanjean, S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity, 32 (2019), 4942–4966. https://doi.org/10.1088/1361-6544/ab435e doi: 10.1088/1361-6544/ab435e |