An extension of the $ m $-weak group inverse (or $ m $-WGI) on the set of rectangular matrices is provided to solve some systems of matrix equations. The extension is termed as the $ W $-weighted $ m $-WGI (or $ W $-$ m $-WGI). The $ W $-$ m $-WGI presents a new, wider class of generalized inverses which involves some already defined generalized inverses, such as the $ m $-WGI, $ W $-weighted weak group, and $ W $-weighted Drazin inverse. Basic properties and diverse characterizations are proved for $ W $-$ m $-WGI. Several expressions for computing $ W $-$ m $-WGI are proposed in terms of known generalized inverses and projectors, as well as its limit and integral representations. The $ W $-$ m $-WGI class is utilized to solve some linear matrix equations and express their general solutions. Some new properties of the weighted generalized group inverse and recognized properties of the $ W $-weighted Drazin inverse are obtained as corollaries. Numerical and symbolic test examples are presented to verify the obtained results.
Citation: D. Mosić, P. S. Stanimirović, L. A. Kazakovtsev. The $ m $-weak group inverse for rectangular matrices[J]. Electronic Research Archive, 2024, 32(3): 1822-1843. doi: 10.3934/era.2024083
An extension of the $ m $-weak group inverse (or $ m $-WGI) on the set of rectangular matrices is provided to solve some systems of matrix equations. The extension is termed as the $ W $-weighted $ m $-WGI (or $ W $-$ m $-WGI). The $ W $-$ m $-WGI presents a new, wider class of generalized inverses which involves some already defined generalized inverses, such as the $ m $-WGI, $ W $-weighted weak group, and $ W $-weighted Drazin inverse. Basic properties and diverse characterizations are proved for $ W $-$ m $-WGI. Several expressions for computing $ W $-$ m $-WGI are proposed in terms of known generalized inverses and projectors, as well as its limit and integral representations. The $ W $-$ m $-WGI class is utilized to solve some linear matrix equations and express their general solutions. Some new properties of the weighted generalized group inverse and recognized properties of the $ W $-weighted Drazin inverse are obtained as corollaries. Numerical and symbolic test examples are presented to verify the obtained results.
[1] | A. Ben-Israel, T. N. E. Grevile, Generalized Inverses, Theory and Applications, 2nd edition, Canadian Mathematical Society, Springer, New York, Beflin, Heidelberg, Hong Kong, London, Milan, Paris, Tokyo, 2003. |
[2] | R. E. Cline, T. N. E. Greville, A Drazin inverse for rectangular matrices, Linear Algebra Appl., 29 (1980), 53–62. https://doi.org/10.1016/0024-3795(80)90230-X doi: 10.1016/0024-3795(80)90230-X |
[3] | K. M. Prasad, K. S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62 (2014), 792–802. https://doi.org/10.1080/03081087.2013.791690 doi: 10.1080/03081087.2013.791690 |
[4] | D. E. Ferreyra, F. E. Levis, N. Thome, Revisiting the core EP inverse and its extension to rectangular matrices, Quaestiones Math., 41 (2018), 265–281. https://doi.org/10.2989/16073606.2017.1377779 doi: 10.2989/16073606.2017.1377779 |
[5] | D. Mosić, Weighted core-EP inverse of an operator between Hilbert spaces, Linear Multilinear Algebra, 67 (2019), 278–298. https://doi.org/10.1080/03081087.2017.1418824 doi: 10.1080/03081087.2017.1418824 |
[6] | D. E. Ferreyra, F. E. Levis, N. Thome, Maximal classes of matrices determining generalized inverses, Appl. Math. Comput., 333 (2018), 42–52. https://doi.org/10.1016/j.amc.2018.03.102 doi: 10.1016/j.amc.2018.03.102 |
[7] | Y. Gao, J. Chen, Pseudo core inverses in rings with involution, Commun. Algebra, 46 (2018), 38–50. https://doi.org/10.1080/00927872.2016.1260729 doi: 10.1080/00927872.2016.1260729 |
[8] | M. Zhou, J. Chen, Integral representations of two generalized core inverses, Appl. Math. Comput., 333 (2018), 187–193. https://doi.org/10.1016/j.amc.2018.03.085 doi: 10.1016/j.amc.2018.03.085 |
[9] | R. Behera, G. Maharana, J. K. Sahoo, Further results on weighted core-EP inverse of matrices, Results Math., 75 (2020), 174. https://doi.org/10.1007/s00025-020-01296-z doi: 10.1007/s00025-020-01296-z |
[10] | G. Dolinar, B. Kuzma, J. Marovt, B. Ungor, Properties of core-EP order in rings with involution, Front. Math. China, 14 (2019), 715–736. https://doi.org/10.1007/s11464-019-0782-8 doi: 10.1007/s11464-019-0782-8 |
[11] | I. Kyrchei, Determinantal representations of the core inverse and its generalizations with applications, J. Math., 2019 (2019). https://doi.org/10.1155/2019/1631979 doi: 10.1155/2019/1631979 |
[12] | H. Ma, P. S. Stanimirović, Characterizations, approximation and perturbations of the core-EP inverse, Appl. Math. Comput., 359 (2019), 404–417. https://doi.org/10.1016/j.amc.2019.04.071 doi: 10.1016/j.amc.2019.04.071 |
[13] | K. M. Prasad, M. D. Raj, Bordering method to compute core-EP inverse, Spec. Matrices, 6 (2018), 193–200. https://doi.org/10.1515/spma-2018-0016 doi: 10.1515/spma-2018-0016 |
[14] | M. M. Zhou, J. L. Chen, T. T. Li, D. G. Wang, Three limit representations of the core-EP inverse, Filomat, 32 (2018), 5887–5894. https://doi.org/10.2298/FIL1817887Z doi: 10.2298/FIL1817887Z |
[15] | O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010), 681–697. https://doi.org/10.1080/03081080902778222 doi: 10.1080/03081080902778222 |
[16] | H. Wang, J. Chen, Weak group inverse, Open Math., 16 (2018), 1218–1232. https://doi.org/10.1515/math-2018-0100 doi: 10.1515/math-2018-0100 |
[17] | D. E. Ferreyra, V. Orquera, N. Thome, A weak group inverse for rectangular matrices, Rev. R. Acad. Cienc. Exactas F$\acute{i}$s. Nat. Ser. A Mat., 113 (2019), 3727–3740. https://doi.org/10.1007/s13398-019-00674-9 doi: 10.1007/s13398-019-00674-9 |
[18] | D. Mosić, D. Zhang, Weighted weak group inverse for Hilbert space operators, Front. Math. China, 15 (2020), 709–726. https://doi.org/10.1007/s11464-020-0847-8 doi: 10.1007/s11464-020-0847-8 |
[19] | N. Liu, H. Wang, The characterizations of WG matrix and its generalized Cayley-Hamilton theorem, J. Math., 2021 (2021). https://doi.org/10.1155/2021/4952943 doi: 10.1155/2021/4952943 |
[20] | D. Mosić, P. S. Stanimirović, Representations for the weak group inverse, Appl. Math. Comput., 397 (2021), 125957. https://doi.org/10.1016/j.amc.2021.125957 doi: 10.1016/j.amc.2021.125957 |
[21] | H. Wang, X. Liu, The weak group matrix, Aequ. Math., 93 (2019), 1261–1273. https://doi.org/10.1007/s00010-019-00639-8 doi: 10.1007/s00010-019-00639-8 |
[22] | H. Yan, H. Wang, K. Zuo, Y. Chen, Further characterizations of the weak group inverse of matrices and the weak group matrix, AIMS Math., 6 (2021), 9322–9341. https://doi.org/10.3934/math.2021542 doi: 10.3934/math.2021542 |
[23] | M. Zhou, J. Chen, Y. Zhou, Weak group inverses in proper $*$-rings, J. Algebra Appl., 19 (2020), 2050238. https://doi.org/10.1142/S0219498820502382 doi: 10.1142/S0219498820502382 |
[24] | Y. Zhou, J. Chen, M. Zhou, m-weak group inverses in a ring with involution, Rev. R. Acad. Cienc. Exactas F$\acute{i}$s. Nat. Ser. A Mat., 115 (2021). https://doi.org/10.1007/s13398-020-00932-1 doi: 10.1007/s13398-020-00932-1 |
[25] | W. Jiang, K. Zuo, Further characterizations of the $m$-weak group inverse of a complex matrix, AIMS Math., 7 (2022), 17369–17392. https://doi.org/10.1007/10.3934/math.2022957 doi: 10.1007/10.3934/math.2022957 |
[26] | D. E. Ferreyra, S. B. Malik, A generalization of the group inverse, Quaestiones Math., 46 (2023). https://doi.org/10.2989/16073606.2022.2144533 doi: 10.2989/16073606.2022.2144533 |
[27] | D. Mosić, P. S. Stanimirović, L. A. Kazakovtsev, Application of $m$-weak group inverse in solving optimization problems, Rev. R. Acad. Cienc. Exactas F$\acute{i}$s. Nat. Ser. A Mat., 118 (2024), 13. https://doi.org/10.1007/s13398-023-01512-9 doi: 10.1007/s13398-023-01512-9 |
[28] | D. Mosić, D. Zhang, New representations and properties of $m$-weak group inverse, Results Math., 78 (2023). https://doi.org/10.1007/s00025-023-01878-7 doi: 10.1007/s00025-023-01878-7 |
[29] | V. Rakočević, Y. Wei, The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert space, Appl. Math. Comput., 141 (2003), 455–470. https://doi.org/10.1016/S0096-3003(02)00267-9 doi: 10.1016/S0096-3003(02)00267-9 |
[30] | P. S. Stanimirović, V. N. Katsikis, H. Ma, Representations and properties of the W-Weighted Drazin inverse, Linear Multilinear Algebra, 65 (2017), 1080–1096. https://doi.org/10.1080/03081087.2016.1228810 doi: 10.1080/03081087.2016.1228810 |
[31] | M. P. Drazin, Weighted (b, c)-inverses in categories and semigroups, Commun. Algebra, 48 (2020), 1423–1438. https://doi.org/10.1080/00927872.2019.1687712 doi: 10.1080/00927872.2019.1687712 |
[32] | P. S. Stanimirović, D. Mosić, H. Ma, New classes of more general weighted outer inverses, Linear Multilinear Algebra, 70 (2022), 122–147. https://doi.org/10.1080/03081087.2020.1713712 doi: 10.1080/03081087.2020.1713712 |
[33] | M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl., 436 (2012), 1909–1923. https://doi.org/10.1016/j.laa.2011.09.004 doi: 10.1016/j.laa.2011.09.004 |
[34] | C. W. Groetsch, Generalized inverses of linear operators: representation and approximation, in Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, Basel, 37 (1977). |
[35] | X. Liu, Y. Yu, J. Zhong, Y. Wei, Integral and limit representations of the outer inverse in Banach space, Linear Multilinear Algebra, 60 (2012), 333–347. https://doi.org/10.1080/03081087.2011.598154 doi: 10.1080/03081087.2011.598154 |
[36] | P. S. Stanimirović, Limit representations of generalized inverses and related methods, Appl. Math. Comput., 103 (1999), 51–68. https://doi.org/10.1016/S0096-3003(98)10048-6 doi: 10.1016/S0096-3003(98)10048-6 |
[37] | Y. Wei, D. S. Djordjević, On integral representation of the generalized inverse $A^{(2)}_{T, S}$, Appl. Math. Comput., 142 (2003), 189–194. https://doi.org/10.1016/S0096-3003(02)00296-5 doi: 10.1016/S0096-3003(02)00296-5 |
[38] | G. Maess, Projection methods solving rectangular systems of linear equations, J. Comput. Appl. Math., 24 (1988), 107–119. https://doi.org/10.1016/0377-0427(88)90346-9 doi: 10.1016/0377-0427(88)90346-9 |
[39] | Y. Wei, A characterization for the W-weighted Drazin inverse and a Cramer rule for the W-weighted Drazin inverse solution, Appl. Math. Comput., 125 (2002), 303–310. https://doi.org/10.1016/S0096-3003(00)00132-6 doi: 10.1016/S0096-3003(00)00132-6 |
[40] | S. L. Campbell, C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979. |