Research article Special Issues

Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis

  • Received: 14 September 2021 Revised: 28 November 2021 Accepted: 29 November 2021 Published: 02 March 2022
  • In this paper, our purpose is to discuss the global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis under homogeneous Neumann boundary conditions. First, we derive that the global classical solutions of the system are globally bounded by taking advantage of the Morse's iteration of the parabolic equation, which further arrives at the global existence of classical solutions with a uniform-in-time bound. In addition, we establish the global stability of the spatially homogeneous coexistence steady states under certain conditions on parameters by constructing Lyapunov functionals.

    Citation: Jialu Tian, Ping Liu. Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis[J]. Electronic Research Archive, 2022, 30(3): 929-942. doi: 10.3934/era.2022048

    Related Papers:

  • In this paper, our purpose is to discuss the global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis under homogeneous Neumann boundary conditions. First, we derive that the global classical solutions of the system are globally bounded by taking advantage of the Morse's iteration of the parabolic equation, which further arrives at the global existence of classical solutions with a uniform-in-time bound. In addition, we establish the global stability of the spatially homogeneous coexistence steady states under certain conditions on parameters by constructing Lyapunov functionals.



    加载中


    [1] V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei Roma., 2 (1926), 31–113. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0
    [2] M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204–213. https://doi.org/10.1016/j.na.2013.02.018 doi: 10.1016/j.na.2013.02.018
    [3] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866
    [4] D. DeAngelis, R. A. Goldstein, R. V. Oneill, A model for tropic interaction, Ecology, (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
    [5] M. Haque, A detailed study of the Beddington-DeAngelis predator-prey model, Math. Biosci., 234 (2011), 1–16. https://doi.org/10.1016/j.mbs.2011.07.003 doi: 10.1016/j.mbs.2011.07.003
    [6] Q. Wang, L. Jin, Z. Y. Zhang, Global well-posedness, pattern formation and spiky stationary solutions in a Beddington-DeAngelis competition system, Discrete Contin. Dyn. Syst., 40 (2020), 2105–2134. https://doi.org/10.3934/dcds.2020108 doi: 10.3934/dcds.2020108
    [7] J. P. Wang, M. X. Wang, The diffusive Beddington-DeAngelis predator-prey model with nonlinear prey-taxis and free boundary, Math. Methods Appl. Sci., 41 (2018), 6741–6762. https://doi.org/10.1002/mma.5189 doi: 10.1002/mma.5189
    [8] S. B. Yu, Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response, Adv. Differ. Equ., 84 (2014), 1–14. https://doi.org/10.1186/1687-1847-2014-84 doi: 10.1186/1687-1847-2014-84
    [9] P. Liu, B. W. Yang, Dynamics analysis of a reaction-diffusion system with Beddington-DeAngelis functional response and strong Allee effect, Nonlinear Anal. Real World Appl., 5 (2020), 102953. https://doi.org/10.1016/j.nonrwa.2019.06.003 doi: 10.1016/j.nonrwa.2019.06.003
    [10] H. Hattori, A. Lagha, Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent, Discrete Contin. Dyn. Syst., 41 (2021), 5141–516. https://doi.org/10.3934/dcds.2021071 doi: 10.3934/dcds.2021071
    [11] W. K. Wang, Y. C. Wang, Global existence and large time behavior for the chemotaxis-shallow water system in a bounded domain, Discrete Contin. Dyn. Syst., 40 (2020), 6379–6409. https://doi.org/10.3934/dcds.2020284 doi: 10.3934/dcds.2020284
    [12] S. N. Wu, J. P. Shi, B. Y. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equ., 269 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
    [13] H. Y. Jin, Z. A. Wang, Global stability of prey-taxis systems. J. Differ. Equ., 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [14] J. P. Wang, M. X. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys., 69 (2018), Paper No. 63, 24 pp. https://doi.org/10.1007/s00033-018-0960-7
    [15] S. N. Wu, W. J. Ni, Boundedness and global stability of a diffusive prey-predator model with prey-taxis, Appl. Anal., 100 (2021), 3259–3275. https://doi.org/10.1080/00036811.2020.1715953 doi: 10.1080/00036811.2020.1715953
    [16] S. N. Wu, J. F. Wang, J. P. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28 (2018), 2275–2312. https://doi.org/10.1142/S0218202518400158 doi: 10.1142/S0218202518400158
    [17] J. F. Wang, S. N. Wu, J. P. Shi, Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1273–1289. https://doi.org/10.3934/dcdsb.2020162 doi: 10.3934/dcdsb.2020162
    [18] X. L. Wang, W. D. Wang, G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431–443. https://doi.org/10.1002/mma.3079 doi: 10.1002/mma.3079
    [19] C. W. Yoon, Y. J. Kim, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149 (2017), 101–123. https://doi.org/10.1007/s10440-016-0089-7 doi: 10.1007/s10440-016-0089-7
    [20] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in: Function Spaces, Differential Operators and Nonlinear Analysis, Friedrichroda, 1992, in: Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, 9–126. https://doi.org/10.1007/978-3-663-11336-21
    [21] H. Y. Jin, Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Euro. J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/S0956792520000248 doi: 10.1017/S0956792520000248
    [22] N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Commun. Partial. Differ. Equ., 4 (1979), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
    [23] N. Bellomo, A. Bellouquid, Y. S. Tao, M. Winkler, Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X
    [24] N. Bellomo, Y. S. Tao, Stabilization in a chemotaxis model for virus infection, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 105–117. https://doi.org/10.3934/dcdss.2020006 doi: 10.3934/dcdss.2020006
    [25] H. Y. Jin, Y. J. Kim, Z. A. Wang, Boundedness, stabilization and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632–1657. https://doi.org/10.1137/17M1144647 doi: 10.1137/17M1144647
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1659) PDF downloads(251) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog