Research article Special Issues

Inverse problem approaches for mutation laws in heterogeneous tumours with local and nonlocal dynamics


  • Received: 20 October 2021 Revised: 05 December 2021 Accepted: 22 December 2021 Published: 10 February 2022
  • Cancer cell mutations occur when cells undergo multiple cell divisions, and these mutations can be spontaneous or environmentally-induced. The mechanisms that promote and sustain these mutations are still not fully understood.

    This study deals with the identification (or reconstruction) of the usually unknown cancer cell mutation law, which lead to the transformation of a primary tumour cell population into a secondary, more aggressive cell population. We focus on local and nonlocal mathematical models for cell dynamics and movement, and identify these mutation laws from macroscopic tumour snapshot data collected at some later stage in the tumour evolution. In a local cancer invasion model, we first reconstruct the mutation law when we assume that the mutations depend only on the surrounding cancer cells (i.e., the ECM plays no role in mutations). Second, we assume that the mutations depend on the ECM only, and we reconstruct the mutation law in this case. Third, we reconstruct the mutation when we assume that there is no prior knowledge about the mutations. Finally, for the nonlocal cancer invasion model, we reconstruct the mutation law that depends on the cancer cells and on the ECM. For these numerical reconstructions, our approximations are based on the finite difference method combined with the finite elements method. As the inverse problem is ill-posed, we use the Tikhonov regularisation technique in order to regularise the solution. Stability of the solution is examined by adding additive noise into the measurements.

    Citation: Maher Alwuthaynani, Raluca Eftimie, Dumitru Trucu. Inverse problem approaches for mutation laws in heterogeneous tumours with local and nonlocal dynamics[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3720-3747. doi: 10.3934/mbe.2022171

    Related Papers:

  • Cancer cell mutations occur when cells undergo multiple cell divisions, and these mutations can be spontaneous or environmentally-induced. The mechanisms that promote and sustain these mutations are still not fully understood.

    This study deals with the identification (or reconstruction) of the usually unknown cancer cell mutation law, which lead to the transformation of a primary tumour cell population into a secondary, more aggressive cell population. We focus on local and nonlocal mathematical models for cell dynamics and movement, and identify these mutation laws from macroscopic tumour snapshot data collected at some later stage in the tumour evolution. In a local cancer invasion model, we first reconstruct the mutation law when we assume that the mutations depend only on the surrounding cancer cells (i.e., the ECM plays no role in mutations). Second, we assume that the mutations depend on the ECM only, and we reconstruct the mutation law in this case. Third, we reconstruct the mutation when we assume that there is no prior knowledge about the mutations. Finally, for the nonlocal cancer invasion model, we reconstruct the mutation law that depends on the cancer cells and on the ECM. For these numerical reconstructions, our approximations are based on the finite difference method combined with the finite elements method. As the inverse problem is ill-posed, we use the Tikhonov regularisation technique in order to regularise the solution. Stability of the solution is examined by adding additive noise into the measurements.



    加载中


    [1] O. Ikediobi, H. Davies, G. Bignell, S. Edkins, C. Stevens, S. O'Meara, et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set, Mol. Cancer Ther., 5 (2006), 2602–2612. https://doi.org/10.1158/1535-7163.MCT-06-0433 doi: 10.1158/1535-7163.MCT-06-0433
    [2] M. Pickup, J. Mouw, V. Weaver, The extracellular matrix modulates the hallmarks of cancer, EMBO Rep., 15 (2014), 1243–1253. https://doi.org/10.15252/embr.201439246 doi: 10.15252/embr.201439246
    [3] A. López-Carrasco, S. Martín-Vañó, R. Burgos-Panadero, E. Monferrer, A. P. Berbegall, B. Fernández-Blanco, et al., Impact of extracellular matrix stiffness on genomic heterogeneity in mycn-amplified neuroblastoma cell line, J. Exp. Clin. Cancer Res., 39 (2020), 226. https://doi.org/10.1186/s13046-020-01729-1 doi: 10.1186/s13046-020-01729-1
    [4] A. L. Jackson, L. A. Loeb, The mutation rate and cancer, Genetics, 148 (1998), 1483–1490. https://doi.org/10.1093/genetics/148.4.1483 doi: 10.1093/genetics/148.4.1483
    [5] N. Novikov, S. Zolotaryova, A. Gautreau, E. Denisov, Mutational drivers of cancer cell migration and invasion, Br. J. Cancer, 124 (2021), 102–114. https://doi.org/10.1038/s41416-020-01149-0 doi: 10.1038/s41416-020-01149-0
    [6] A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele, A. M. Thompson, Mathematical modelling of tumour invasion and metastasis, J. Theor. Med., 2 (2000), 490902. https://doi.org/10.1080/10273660008833042 doi: 10.1080/10273660008833042
    [7] A. R. A. Anderson, A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion, Math. Med. Biol., 22 (2005), 163–186. https://doi.org/10.1093/imammb/dqi005 doi: 10.1093/imammb/dqi005
    [8] A. R. Anderson, M. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857–899. https://doi.org/10.1006/bulm.1998.0042 doi: 10.1006/bulm.1998.0042
    [9] R. A. Gatenby, E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745–5753. Available from: https://cancerres.aacrjournals.org/content/56/24/5745.full-text.pdf.
    [10] M. Chaplain, G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685–1734. https://doi.org/10.1142/S0218202505000947 doi: 10.1142/S0218202505000947
    [11] P. Domschke, D. Trucu, A. Gerisch, M. Chaplain, Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns, J. Theor. Biol., 361 (2014), 41–60. https://doi.org/10.1016/j.jtbi.2014.07.010 doi: 10.1016/j.jtbi.2014.07.010
    [12] I. Ramis-Conde, D. Drasdo, A. R. Anderson, M. A. Chaplain, Modeling the influence of the e-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach, Biophys. J., 95 (2008), 155–165. https://doi.org/10.1529/biophysj.107.114678 doi: 10.1529/biophysj.107.114678
    [13] A. Marciniak-Czochra, M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM J. Math. Anal., 40 (2008), 215–237. https://doi.org/10.1137/050645269 doi: 10.1137/050645269
    [14] P. Macklin, S. McDougall, A. R. A. Anderson, M. A. J. Chaplain, V. Cristini, J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth, J. Math. Biol., 58 (2009), 765–798. https://doi.org/10.1007/s00285-008-0216-9 doi: 10.1007/s00285-008-0216-9
    [15] T. S. Deisboeck, Z. Wang, P. Macklin, V. Cristini, Multiscale cancer modeling, Ann. Rev. Biomed. Eng., 13 (2011), 127–155. https://doi.org/10.1146/annurev-bioeng-071910-124729 doi: 10.1146/annurev-bioeng-071910-124729
    [16] D. Trucu, P. Lin, M. A. J. Chaplain, Y. Wang, A multiscale moving boundary model arising in cancer invasion, Multiscale Model. Simul. SIAM Int. J., 11 (2013), 309–335. https://doi.org/10.1137/110839011 doi: 10.1137/110839011
    [17] T. Colin, A. Iollo, J.-B. Lagaert, O. Saut, An inverse problem for the recovery of the vascularisation of a tumour, J. Inverse Ill-Posed Probl., 22 (2014), 759–786. https://doi.org/10.1515/jip-2013-0009 doi: 10.1515/jip-2013-0009
    [18] A. Gholami, A. Mang, G. Biros, An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas, J. Math. Biol., 72 (2016), 409–433. https://doi.org/10.1007/s00285-015-0888-x doi: 10.1007/s00285-015-0888-x
    [19] C. Hogea, C. Davatzikos, G. Biros, An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects, J. Math. Biol., 56 (2008), 793–825. https://doi.org/10.1007/s00285-007-0139-x doi: 10.1007/s00285-007-0139-x
    [20] R. Jaroudi, G. Baravdish, B. Johansson, F. Aström, Numerical reconstruction of brain tumours, Inverse Probl. Sci. Eng., 27 (2019), 278–298. https://doi.org/10.1080/17415977.2018.1456537 doi: 10.1080/17415977.2018.1456537
    [21] S. Subramanian, K. Scheufele, M. Mehl, G. Biros, Where did the tumour start? An inverse solver with sparse localisation for tumour growth models, Inverse Probl., 36 (2020), 045006. https://doi.org/10.1088/1361-6420/ab649c doi: 10.1088/1361-6420/ab649c
    [22] N. J. Armstrong, K. J. Painter, J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theor. Biol., 243 (2006), 98–113. https://doi.org/10.1016/j.jtbi.2006.05.030 doi: 10.1016/j.jtbi.2006.05.030
    [23] A. Gerisch, M. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion, J. Theor. Biol., 250 (2008), 684–704. https://doi.org/10.1016/j.jtbi.2007.10.026 doi: 10.1016/j.jtbi.2007.10.026
    [24] V. Bhandari, C. H. Li, R. G. Bristow, P. C. Boutros, P. Consortium, Divergent mutational processes distinguish hypoxic and normoxic tumours, Nat. Commun., 11 (2020), 737. https://doi.org/10.1038/s41467-019-14052-x doi: 10.1038/s41467-019-14052-x
    [25] F. G. Sonugür, H. Akbulut, The role of tumor microenvironment in genomic instability of malignant tumors, Front. Genet., 10 (2019), 1063. https://doi.org/10.3389/fgene.2019.01063 doi: 10.3389/fgene.2019.01063
    [26] R. Shuttleworth, D. Trucu, Cell-scale degradation of peritumoural extracellular matrix fibre network and its role within tissue-scale cancer invasion, Bull. Math. Biol., 82 (2020), 65. https://doi.org/10.1007/s11538-020-00732-z doi: 10.1007/s11538-020-00732-z
    [27] R. Shuttleworth, D. Trucu, Multiscale dynamics of a heterotypic cancer cell population within a fibrous extracellular matrix, J. Theor. Biol., 486 (2020), 110040. https://doi.org/10.1016/j.jtbi.2019.110040 doi: 10.1016/j.jtbi.2019.110040
    [28] K. Yosida, Functional Analysis, Springer-Verlag, 1980.
    [29] R. L. Schilling, Measures, Integrals and Martingales, Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511810886
    [30] H. W. Engl, K. Kunisch, A. Neubauer, Convergence rates for tikhonov regularisation of non-linear ill-posed problems, Inverse Probl., 5 (1989), 523–540. https://doi.org/10.1088/0266-5611/5/4/007 doi: 10.1088/0266-5611/5/4/007
    [31] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamics Finite Element Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
    [32] V. A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984. https://doi.org/10.1007/978-1-4612-5280-1
    [33] C. Guiot, P. Degiorgis, P. Delsanto, P. Gabriele, T. Diesboeck, Does tumour growth follow a "universal law"? J. Theor. Biol., 225 (2003), 147–151. https://doi.org/10.1016/S0022-5193(03)00221-2 doi: 10.1016/S0022-5193(03)00221-2
    [34] A. Laird, Dynamics of tumour growth, Br. J. Cancer, 18 (1964), 490–502. https://doi.org/10.1038/bjc.1964.55 doi: 10.1038/bjc.1964.55
    [35] K. M. C. Tjorve, E. Tjorve, The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family, PLoS One, 12 (2017), 1–17. https://doi.org/10.1371/journal.pone.0178691 doi: 10.1371/journal.pone.0178691
    [36] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, 2007.
    [37] L. Peng, D. Trucu, P. Lin, A. Thompson, M. A. Chaplain, A multiscale mathematical model of tumour invasive growth, Bull. Math. Biol., 79 (2017), 389–429. https://doi.org/10.1007/s11538-016-0237-2 doi: 10.1007/s11538-016-0237-2
    [38] R. Shuttleworth, D. Trucu, Two-scale moving boundary dynamics of cancer invasion: Heterotypic cell populations' evolution in heterogeneous ecm, in Cell Movement Modelling and Applications (eds. M. Stolarska and N. Tarfulea), Birkhauser, Springer Nature Switzerland AG, (2018), 1–26.
    [39] R. Shuttleworth, D. Trucu, Multiscale modelling of fibres dynamics and cell adhesion within moving boundary cancer invasion, Bull. Math. Biol., 81 (2019), 2176–2219. https://doi.org/10.1007/s11538-019-00598-w doi: 10.1007/s11538-019-00598-w
    [40] V. Andasari, A. Gerisch, G. Lolas, A. P. South, M. A. Chaplain, Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation, J. Math. Biol., 63 (2011), 141–171. https://doi.org/10.1007/s00285-010-0369-1 doi: 10.1007/s00285-010-0369-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2053) PDF downloads(82) Cited by(3)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog