Citation: Tianran Yuan, Hongsheng Zhang, Hao Liu, Juan Du, Huiming Yu, Yimin Wang, Yabin Xu. Watertight 2-manifold 3D bone surface model reconstruction from CT images based on visual hyper-spherical mapping[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1280-1313. doi: 10.3934/mbe.2021068
[1] | K. Engelke, C. Libanati, T. Fuerst, P. Zysset, H. K. Genant, Advanced CT based in vivo methods for the assessment of bone density, structure, and strength, Curr. Osteoporos. Rep., 11 (2013), 246-255. |
[2] | H. K. Genant, K. Engelke, S. Prevrhal, Advanced CT bone imaging in osteoporosis, Rheumatology, 47 (2008), 9-16. |
[3] | N. Goyal, M. Kalra, A. Soni, P. Baweja, N. P.Ghonghey, Multi-modality imaging approach to bone tumors-state-of-the art, J. Clin. Orthop. Trauma, 10 (2019), 687-701. |
[4] | G. X. Pei, Y. B. Yan, Current status and progress of digital orthopaedics in china, J. Othop. Trans., 2 (2017), 107-117. |
[5] | S. Girod, M. Teschner, U. Schrell, B. Kevekordes, B. Girod, Computer-aided 3-d simulation and prediction of craniofacial surgery: A new approach, J. Cranio-MaxilloFac. Surg., 29 (2001), 156-158. |
[6] | S. K. Parashar, J. K. Sharma, A review on application of finite element modelling in bone biomechanics, Perspect. Sci., 8 (2016), 696-698. |
[7] | F. E. Boas, D. Fleischmann, CT artifacts: Causes and reduction techniques. Imaging Med., 4 (2012), 229-240. |
[8] | G. Wang, M. W. Vannier, Stair-step artifacts in three-dimensional helical CT: An experimental study, Radiology, 191 (1994), 79-83. |
[9] | E. A. Zanaty, Said Ghoniemy, Medical image segmentation techniques: An overview, Int. J. Inf. Med. Data Process., 1 (2016), 16-37. |
[10] | S. P. Lim, H. Haron, Surface reconstruction techniques: A review, Artif. Intell. Rev., 42 (2014), 59-78. |
[11] | F. Zhao, X. Xie, An overview of interactive medical image segmentation, Ann. BMVA, 7 (2013), 1-22. |
[12] | N. Sharma, L. M. Aggarwal, Automated medical image segmentation techniques, J. Med. Phys./Assoc. Med. Phys. India, 35 (2010), 3. |
[13] | M. I. Razzak, S. Naz, A. Zaib, Deep learning for medical image processing: Overview, challenges and the future, Classif. BioApps, 26 (2018), 323-350. |
[14] | D. F. Malan, C. P. Botha, E. R. Valstar, Voxel classification and graph cuts for automated segmentation of pathological periprosthetic hip anatomy, Int. J. Comput. Assist. Radiol. Surg., 8 (2013), 63-74. |
[15] | J. Ma, L. Lu, Y. Zhan, X. Zhou, M. Salganicoff, A. Krishnan, Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model, Comput. Vision Image Understanding, 117 (2013), 1072-1083. |
[16] | L. Lu, D. Wu, N. Lay, D. Liu, I. Nogues, R. M. Summers, Accurate 3D bone segmentation in challenging CT images: Bottom-up parsing and contextualized optimization, IEEE WACV 2016, (2016), 1-10. |
[17] | N. Amenta, S. Choi, R. K. Kolluri, The power crust, unions of balls and the medial axis transform, Comput. Geometry, 19 (2001), 127-153. |
[18] | F. Bernardini, C. L.Bajaj, Sampling and reconstructing manifolds using alpha-shapes, Dep. Comput. Sci. Tech. Rep., (1998), 1350. |
[19] | H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface reconstruction from unorganized points, ACM SIGGRAPH Comput. Graphics, 26 (1992), 71-78. |
[20] | J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.McCallum, et al., Reconstruction and representation of 3D objects with radial basis functions, ACM SIGGRAPH, (2001), 67-76. |
[21] | M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. T. Silva, Computing and rendering point set surfaces, IEEE Trans. Vis. Comput. Graph., 9 (2003), 3-15. |
[22] | Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, H. P. Seidel, Multi-level partition of unity implicits, ACM Trans. Graphics, 22 (2003), 463-470. |
[23] | M. Kazhdan, M. Bolitho, H. Hoppe, Poisson surface reconstruction, Symp. Geom. Process., 7 (2006), 61-70. |
[24] | Z. Pan, J. Lu, A Bayes-based region-growing algorithm for medical image segmentation, Comput. Sci. Eng., 9 (2007), 32-38. |
[25] | K. Zhang, L. Zhang, K. M. Lam, D. Zhang, A level set approach to image segmentation with intensity inhomogeneity, IEEE Tech. Cybern., 46 (2015), 546-557. |
[26] | T. Heimann, H. P. Meinzer, Statistical shape models for 3D medical image segmentation: A review, Med. Image Anal., 13 (2009), 543-563. |
[27] | Y. Boykov, G. Funka-Lea, Graph cuts and efficient ND image segmentation, Int. J. Comput. Vis., 70 (2006), 109-131. |
[28] | G. N. Abras, V. L. Ballarín, A weighted k-means algorithm applied to brain tissue classification, J. Compu. Sci. Technol., 5 (2005), 121-126. |
[29] | A. Gacsádi, P. Szolgay, Variational computing based segmentation methods for medical imaging by using CNN, IEEE CNNA, (2010), 1-6. |
[30] | M. Vania, D. Mureja, D. Lee, Automatic spine segmentation from CT images using convolutional neural network via redundant generation of class labels, J. Comput. Des. Eng., 6 (2019), 224-232. |
[31] | K. Zhang, J. Deng, W. Lu, Segmenting human knee cartilage automatically from multi-contrast MR images using support vector machines and discriminative random fields, IEEE ICIP, (2011), 721-724. |
[32] | J. T. Barron, M. D. Biggin, P. Arbelaez, D. W. Knowles, S. V. Keranen, J. Malik, Volumetric semantic segmentation using pyramid context features, IEEE ICCV, (2013), 3448-3455. |
[33] | A. Farag, L. Lu, E. Turkbey, J. Liu, R. M. Summers, A bottom-up approach for automatic pancreas segmentation in abdominal CT scans, Int. MICCAI Workshop Comput. Clin. Challenges Abdom. Imaging, (2014), 103-113 |
[34] | J. Zhang, C. H. Yan, C. K. Chui, S. H. Ong, Fast segmentation of bone in CT images using 3D adaptive thresholding, Comput. Biol. Med., 40 (2010), 231-236. |
[35] | S. Katz, A. Tal, R. Basri, direct visibility of point sets, ACM SIGGRAPH 2007, (2007), 24-40. |
[36] | O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, H. P. Seidel, Laplacian surface editing, ACM SGP 2004, (2004), 175-184. |
[37] | S. Bouaziz, M. Deuss, Y. Schwartzburg, T. Weise, M. Pauly, Shape-up: Shaping discrete geometry with projections, Comput. Graphics Forum, 31 (2012), 1657-1667. |
[38] | B. Cyganek, J. P. Siebert, An Introduction to 3D Computer Vision Techniques and Algorithms, 2011. |
[39] | J. Kwon, J. W. Yi, S. M. Song, Adaptive cubic interpolation of CT slices for maximum intensity projections, Med. Imaging Int. Soc. Opt. Photonics 2004, 5367 (2004), 837-844. |
[40] | C. B. Barber, D. P. Dobkin, H. Huhdanpaa, Qhull: Quickhull algorithm for computing the convex hull, ASCL, (2013), 1300-1304. |
[41] | J. Sankaranarayanan, H. Samet, A. Varshney, A fast k-neighborhood algorithm for large point-clouds, IEEE SPBG 2006, (2006), 75-84. |