Research article

Study of the sterile insect release technique for a two-sex mosquito population model

  • Received: 22 October 2020 Accepted: 13 January 2021 Published: 20 January 2021
  • In this paper, to study the large-scale time control and limited-time control of mosquito population in a field, a two-sex mosquito population model with stage structure and impulsive releases of sterile males is proposed. For the large-scale time control, a wild mosquito-free periodic solution is given and conditions under which it is globally stable are obtained by the use of the monotone system theory. Besides, based on the stability analysis, threshold conditions under which the wild mosquito population is eliminated or not are obtained. Then we study three different optimal release strategies for the limited-time control, which takes into account both of the population control level of wild mosquitoes and the economic input. To solve technical problems in optimal impulsive control, a time rescaling technique is applied and the gradients of cost function with respect to all control parameters are obtained. In addition, by the aid of numerical simulation, we get the optimal release amounts and release timings for each release strategy. Our study indicates that the optimal release timing control is superior to the optimal release amount control. However, simultaneous optimal selection of release amount and release timing leads to the best control performance.

    Citation: Mingzhan Huang, Shouzong Liu, Xinyu Song. Study of the sterile insect release technique for a two-sex mosquito population model[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1314-1339. doi: 10.3934/mbe.2021069

    Related Papers:

  • In this paper, to study the large-scale time control and limited-time control of mosquito population in a field, a two-sex mosquito population model with stage structure and impulsive releases of sterile males is proposed. For the large-scale time control, a wild mosquito-free periodic solution is given and conditions under which it is globally stable are obtained by the use of the monotone system theory. Besides, based on the stability analysis, threshold conditions under which the wild mosquito population is eliminated or not are obtained. Then we study three different optimal release strategies for the limited-time control, which takes into account both of the population control level of wild mosquitoes and the economic input. To solve technical problems in optimal impulsive control, a time rescaling technique is applied and the gradients of cost function with respect to all control parameters are obtained. In addition, by the aid of numerical simulation, we get the optimal release amounts and release timings for each release strategy. Our study indicates that the optimal release timing control is superior to the optimal release amount control. However, simultaneous optimal selection of release amount and release timing leads to the best control performance.


    加载中


    [1] H. J. Barclay, The sterile insect release method on species with two-stage life cycles, Res. Popul. Ecol., 21 (1980), 165–180. doi: 10.1007/BF02513619
    [2] H. J. Barclay, M. Mackauer, The sterile insect release method for pest control: A density dependent model, Environ. Entomol., 9 (1980), 810–817. doi: 10.1093/ee/9.6.810
    [3] H. J. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol., 24 (1982), 405–416. doi: 10.1007/BF02515585
    [4] H. J. Barclay, Modeling incomplete sterility in a sterile release program: Interactions with other factors, Popul. Ecol., 43 (2001), 197–206. doi: 10.1007/s10144-001-8183-7
    [5] H. J. Barclay, Mathematical models for the use of sterile insects, in Sterile Insect Technique, Springer, Heidelberg, (2005), 147–174.
    [6] L. Alphey, M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service, et al., Sterile-insect methods for control of mosquito-borne diseases: an analysis, Vector-Borne Zoonotic Dis., 10 (2010), 295–311. doi: 10.1089/vbz.2009.0014
    [7] W. Klassen, Area-wide integrated pest management and the sterile insect technique, in Sterile Insect Technique (eds. V. A. Dyck, J. Hendrichs and A. S. Robinson), Springer, The Netherlands, (2005), 39–68.
    [8] M. Strugarek, H. Bossin, Y. Dumont, On the use of the sterile insect release technique to reduce or eliminate mosquito populations, Appl. Math. Model., 68 (2019), 443–470. doi: 10.1016/j.apm.2018.11.026
    [9] H. Laven, Eradication of culex pipiens fatigans through cytoplasmic incompatibility, Nature, 216 (1967), 383–384. doi: 10.1038/216383a0
    [10] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. doi: 10.1038/s41586-019-1407-9
    [11] K. R. Fister, M. L. Mccarthy, S. F. Oppenheimer, C. Collins, Optimal control of insects through sterile insect release and habitat modification, Math. Biosci., 244 (2013), 201–212. doi: 10.1016/j.mbs.2013.05.008
    [12] S. M. White, P. Rohani, S. M. Sait, Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics, J. Appl. Ecol., 47 (2010), 1329–1339. doi: 10.1111/j.1365-2664.2010.01880.x
    [13] J. Li, Z. Yuan, Modeling releases of sterile mosquitoes with different strategies, J. Biol. Dynam., 9 (2015), 1–14.
    [14] J. Li, J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dynam., 11 (2017), 316–333. doi: 10.1080/17513758.2016.1216613
    [15] J. Li, L. Cai, Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol. Dynam., 11 (2017), 79–101. doi: 10.1080/17513758.2016.1159740
    [16] L. Cai, S. Ai, J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM, J. Appl. Math., 74 (2014), 1786–1809. doi: 10.1137/13094102X
    [17] Y. Dumont, J. M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikungunya disease andAedes albopictus, J. Math. Biol., 65 (2012), 809–854. doi: 10.1007/s00285-011-0477-6
    [18] J. Huang, S. Ruan, P. Yu, Y. Zhang, Bifurcation analysis of a mosquito population model with a saturated release rate of sterile mosquitoes, SIAM J. Appl. Dyn. Syst., 18 (2019), 939–972. doi: 10.1137/18M1208435
    [19] L. Cai, J. Huang, X. Song, Y. Zhang, Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes, Discrete Contin. Dynam. Syst. Ser. B, 25 (2019), 6279–6295.
    [20] Z. Qiu, X. Wei, C. Shan, H. Zhu, Monotone dynamics and global behaviors of a West Nile virusmodel with mosquito demographics, J. Math. Biol., 80 (2020), 809–834. doi: 10.1007/s00285-019-01442-4
    [21] M. Huang, X. Song, J. Li, Modelling and analysis of impulsive release of sterile mosquitoes, J. Biol. Dynam., 11 (2017), 147–171. doi: 10.1080/17513758.2016.1254286
    [22] P. A. Bliman, D. Cardona-Salgado, Y. Dumont, O. Vasilieva, Implementation of control strategies for sterile insect techniques, Math. Biosci., 314 (2019), 43–60. doi: 10.1016/j.mbs.2019.06.002
    [23] J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM, J. Appl. Math., 78 (2018), 3168–3187. doi: 10.1137/18M1204917
    [24] J. Yu, J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equations, 269 (2020), 6193–6215. doi: 10.1016/j.jde.2020.04.036
    [25] J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equations, 269 (2020), 10395–10415. doi: 10.1016/j.jde.2020.07.019
    [26] J. Yu, J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dynam., 13 (2019), 606–620. doi: 10.1080/17513758.2019.1682201
    [27] J. Li, S. Ai, Impulsive releases of sterile mosquitoes and interactive dynamics with time delay, J. Biol. Dynam., 14 (2020), 313–331.
    [28] J. Yu, B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Differ. Equations Appl., 25 (2019), 1–19. doi: 10.1080/10236198.2018.1551379
    [29] M. Huang, M. Tang, J. Yu, B. Zheng, A stage structured model of delay differential equations for aedes mosquito population suppression, Discrete Contin. Dynam. Syst., 40 (2020), 3467–3484. doi: 10.3934/dcds.2020042
    [30] S. Xiang, Y. Pei, X. Liang, Analysis and optimization-based on a sex pheromone and pesticide pest model with gestation delay, Int. J. Biomath., 12 (2019), 1950054. doi: 10.1142/S1793524519500542
    [31] Z. Q. Yang, X. Y. Wang, Y. N. Zhang, S. B. Vinson, Recent advances in biological control of important native and invasive forest pests in China, Biol. Control, 68 (2014), 117–128. doi: 10.1016/j.biocontrol.2013.06.010
    [32] P. Neuenschwander, H. R. Herren, Biological control of the cassava mealybug, Phenacoccusmanihoti, by the exotic parasitoid epidinocarsis lopezi in Africa, Philos. Trans. R. Soc. Lond. B, Biol. Sci., 318 (1988), 319–333. doi: 10.1098/rstb.1988.0012
    [33] X. Y. Liang, Y. Z. Pei, M. X. Zhu, Y. F. Lv, Multiple kinds of optimal impulse control strategies on plant-pest-predator model with eco-epidemiology, Appl. Math. Comput., 287 (2016), 1–11.
    [34] Y. Z. Pei, M. M. Chen, X. Y. Liang, C. G. Li, M. X. Zhu, Optimizing pulse timings and amounts of biological interventions for a pest regulation model, Nonlinear Anal. Hybrid Syst., 27 (2018), 353–365. doi: 10.1016/j.nahs.2017.10.003
    [35] B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction, Nat. Resour. Model., 3 (1989), 481–538. doi: 10.1111/j.1939-7445.1989.tb00119.x
    [36] S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201–209. doi: 10.1016/S0040-5809(03)00072-8
    [37] D. D. Bainov, P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, CRC Press, London, 66 (1993).
    [38] D. D. Bainov, P. S. Simeonov, System with Impulse Effect, Theory and Applications, Prentice Hall, Englewood, (1989).
    [39] H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Bull. Am. Math. Soc., 33 (1996), 203–209. doi: 10.1090/S0273-0979-96-00642-8
    [40] K. L. Teo, Control parametrization enhancing transform to optimal control problems, Nonlinear Anal.: Theory, Methods, Appl., 63 (2005), e2223–e2236. doi: 10.1016/j.na.2005.03.066
    [41] Y. Liu, K. L. Teo, L. S. Jennings, S. Wang, On a class of optimal control problems with state jumps, J. Optim. Theory Appl., 98 (1998), 65–82. doi: 10.1023/A:1022684730236
    [42] F. D. Parker, Management of pest populations by manipulating densities of both hosts and parasites through periodic releases, in Biological Control, Springer, Boston, (1971), 365–376.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2519) PDF downloads(183) Cited by(6)

Article outline

Figures and Tables

Figures(9)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog