Citation: Hongtao Liu, Shuqin Liu, Xiaoxu Ma, Yunpeng Zhang. A numerical model applied to the simulation of cardiovascular hemodynamics and operating condition of continuous-flow left ventricular assist device[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7519-7543. doi: 10.3934/mbe.2020384
[1] | E. Lim, S. Dokos, S. L. Cloherty, R. F. Salamonsen, D. G. Mason, J. A. Reizes, et al., Parameter-Optimized Model of Cardiovascular-Rotary Blood Pump Interactions, Ieee Trans. Biomed. Eng., 57 (2010), 254-266. doi: 10.1109/TBME.2009.2031629 |
[2] | A. S. Karavaev, Y. M. Ishbulatov, V. I. Ponomarenko, M. D. Prokhorov, V. I. Gridnev, B. P. Bezruchko, et al., Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure, J. Am. Soc. Hypertens., 10 (2016), 235-243. doi: 10.1016/j.jash.2015.12.014 |
[3] | S. Kosta, J. Negroni, E. Lascano, P. C. Dauby, Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices, Math. Biosci., 284 (2017), 71-79. doi: 10.1016/j.mbs.2016.05.007 |
[4] | Y. B. Shi, T. Korakianitis, Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps, Comput. Biol. Med., 93 (2018), 127-138. doi: 10.1016/j.compbiomed.2017.12.012 |
[5] | R. S. Figliola, A. Giardini, T. Conover, T. A. Camp, G. Biglino, J. Chiulli, et al., In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects, Prog. Pediatr. Cardiol, 30 (2010), 71-80. doi: 10.1016/j.ppedcard.2010.09.009 |
[6] | S. Ribaric, M. Kordas, Simulation of the Frank-Starling Law of the Heart, Comput. Math. Methods Med., 2012 (2012), 1-12. |
[7] | M. A. Simaan, A. Ferreira, S. H. Chen, J. F. Antaki, D. G. Galati, A Dynamical State Space Representation and Performance Analysis of a Feedback-Controlled Rotary Left Ventricular Assist Device, Ieee Trans. Control Syst. Technol., 17 (2009), 15-28. doi: 10.1109/TCST.2008.912123 |
[8] | L. M. Itu, P. Sharma, C. Suciu, Patient-specific Hemodynamic Computations: Application to Personalized Diagnosis of Cardiovascular Pathologies, Springer International publishing, 2017. |
[9] | K. Gu, Y. Chang, B. Gao, Y. Liu, Z. Zhang, F. Wan, Lumped parameter model for heart failure with novel regulating mechanisms of peripheral resistance and vascular compliance, ASAIO J., 58 (2012), 223-231. doi: 10.1097/MAT.0b013e31824ab695 |
[10] | M. Abdi, A. Karimi, M. Navidbakhsh, G. P. Jahromi, K. Hassani, A lumped parameter mathematical model to analyze the effects of tachycardia and bradycardia on the cardiovascular system, Int. J. Numer. Model. EL, 28 (2015), 346-357. doi: 10.1002/jnm.2010 |
[11] | D. S. Petukhov, D. V. Telyshev, A Mathematical Model of the Cardiovascular System of Pediatric Patients with Congenital Heart Defect, Biomed. Eng., 50 (2016), 229-232. doi: 10.1007/s10527-016-9626-y |
[12] | S. Pant, C. Corsini, C. Baker, T. Y. Hsia, G. Pennati, I. E. Vignon-Clementel, A Lumped Parameter Model to Study Atrioventricular Valve Regurgitation in Stage 1 and Changes Across Stage 2 Surgery in Single Ventricle Patients, IEEE Trans. Biomed. Eng., 65 (2018), 2450-2458. doi: 10.1109/TBME.2018.2797999 |
[13] | T. G. Myers, V. R. Ripoll, A. S. de Tejada Cuenca, S. L. Mitchell, M. J. McGuinness, Modelling the cardiovascular system for assessing the blood pressure curve, Math. Ind. Case Stud., 8 (2017), 1-16. |
[14] | Y. B. Shi, T. Korakianitis, Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device, Artif. Organs, 30 (2006), 929-948. doi: 10.1111/j.1525-1594.2006.00326.x |
[15] | M. Capoccia, S. Marconi, S. A. Singh, D. M. Pisanelli, C. De Lazzari, Simulation as a preoperative planning approach in advanced heart failure patients. A retrospective clinical analysis, Biomed. Eng. Online, 17 (2018). |
[16] | C. De Lazzari, M. Darowski, G. Ferrari, D. M. Pisanelli, G. Tosti, The impact of rotary blood pump in conjunction with mechanical ventilation on ventricular energetic parameters - Numerical simulation, Methods Inf. Med., 45 (2006), 574-583. doi: 10.1055/s-0038-1634120 |
[17] | C. De Lazzari, I. Genuini, B. Quatember, F. Fedele, Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: In silico study, Comput. Methods Programs Biomed., 113 (2014), 642-654. doi: 10.1016/j.cmpb.2013.11.011 |
[18] | CARDIOSIM© Cardiovascular Software Simulator developed at the Institute of Clinical Physiology.(2018), https://cardiosim.dsb.cnr.it/.2018. |
[19] | C. De Lazzari, I. Genuini, D. M. Pisanelli, A. D'Ambrosi, F. Fedele, Interactive simulator for e-Learning environments: a teaching software for health care professionals, Biomed. Eng. Online, 13 (2014). |
[20] | A. Di Molfetta, A. Amodeo, M. G. Gagliardi, M. G. Trivella, L. Fresiello, S. Filippelli, et al., Hemodynamic Effects of Ventricular Assist Device Implantation on Norwood, Glenn, and Fontan Circulation: A Simulation Study, Artif. Organs, 40 (2016), 34-42. doi: 10.1111/aor.12591 |
[21] | A. Di Molfetta, G. Ferrari, R. Iacobelli, S. Filippelli, A. Amodeo, Concurrent Use of Continuous and Pulsatile Flow Ventricular Assist Device on a Fontan Patient: A Simulation Study, Artif. Organs, 41 (2017), 32-39. doi: 10.1111/aor.12859 |
[22] | A. Di Molfetta, G. Ferrari, R. Iacobelli, S. Filippelli, L. Fresiello, P. Guccione, et al., Application of a Lumped Parameter Model to Study the Feasibility of Simultaneous Implantation of a Continuous Flow Ventricular Assist Device (VAD) and a Pulsatile Flow VAD in BIVAD Patients, Artif. Organs, 41 (2017), 242-252. doi: 10.1111/aor.12911 |
[23] | J. T. Ottesen, M. S. Olufsen, J. K. Larsen, Applied Numerical models in Human Physiology. Denmark, Roskilde: Roskilde University. 2003. |
[24] | M. Ursino, Interaction between carotid baroregulation and the pulsating heart: a mathematical model, Am. J. Physiol.-Heart Circ. Physiol., 275 (1998), H1733-H1747. doi: 10.1152/ajpheart.1998.275.5.H1733 |
[25] | J. T. Ottesen, Modelling the dynamical baroreflex-feedback control, Math. Comput. Model., 31 (2000), 167-173. |
[26] | S. Bozkurt, Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support, Artif. Organs, 42 (2018), 800-813. doi: 10.1111/aor.13148 |
[27] | S. Bozkurt, K. K. Safak, Evaluating the Hemodynamical Response of a Cardiovascular System under Support of a Continuous Flow Left Ventricular Assist Device via Numerical Modeling and Simulations, Comput. Math. Methods Med., 2013 (2013). |
[28] | L. G. E. Cox, S. Loerakker, M. C. M. Rutten, B. A. J. M. de Mol, F. N. van de Vosse, A Mathematical Model to Evaluate Control Strategies for Mechanical Circulatory Support, Artif. Organs, 33 (2009), 593-603. |
[29] | L. Fresiello, F. Rademakers, P. Claus, G. Ferrari, A. Di Molfetta, B. Meyns, Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator, Plos One, 12 (2017). |
[30] | C. Gross, F. Moscato, T. Schloglhofer, LVAD speed increase during exercise, which patients would benefit the most? A simulation study, Artif. Organs, 44 (2019), 239-247. |
[31] | S. Bozkurt, F. N. van de Vosse, M. C. M. Rutten, Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling, Int. J. Artif. Organs, 37 (2014), 773-785. doi: 10.5301/ijao.5000328 |
[32] | K. M. Lim, I. S. Kim, S. W. Choi, B. G. Min, Y. S. Won, H. Y. Kim, et al., Computational analysis of the effect of the type of LVAD flow on coronary perfusion and ventricular afterload, J. Physiol. Sci., 59 (2009), 307-316. doi: 10.1007/s12576-009-0037-7 |
[33] | H. Suga, K. Sagawa, Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle, Circ. Res., 35 (1974), 117-126. doi: 10.1161/01.RES.35.1.117 |
[34] | I. Kokalari, Review on lumped parameter method for modeling the blood flow in systemic arteries, J. Biomed. Sci. Eng., 06 (2013), 92-99. doi: 10.4236/jbise.2013.61012 |
[35] | S. Choi, Modeling and control of left ventricular assist system[Ph. D. Dissertation]. Pittsburgh: University of Pittsburgh. 1998. |
[36] | S. M. Sopher, M. L. Smith, D. L. Eckberg, J. M. Fritsch, M. E. Dibnerdunlap, Autonomic Pathophysiology in Heart-Failure-Carotid Baroreceptor-Cardiac Reflexes, Am. J. Physiol., 259 (1990), H689-H696. |
[37] | P. B. Persson, Modulation of cardiovascular control mechanisms and their interaction, Physiol. Rev., 76 (1996), 193-244. doi: 10.1152/physrev.1996.76.1.193 |
[38] | J. E. Hall, M. E. Hall, Guyton and Hall Textbook of Medical Physiology. Philadelphia, PA: Elsevier Inc. 2011. |
[39] | A. C. Guyton, Textbook of Medical Physiology. Philadelphia, W.B: Elsevier Inc. 1986. |
[40] | K. M. Swetz, M. R. Freeman, P. S. Mueller, S. J. Park, Clinical management of continuous-flow left ventricular assist devices in advanced heart failure, J. Heart Lung Transplant., 29 (2010), S1-S38. doi: 10.1016/j.healun.2010.01.011 |
[41] | S. Undar, O. T. H. Frazier, C. D. Fraser, Defining pulsatile perfusion: Quantification in terms of energy equivalent pressure, Artif. Organs, 23 (1999), 712-716. doi: 10.1046/j.1525-1594.1999.06409.x |
[42] | T. Pirbodaghi, S. Axiak, A. Weber, T. Gempp, S. Vandenberghe, Pulsatile control of rotary blood pumps: Does the modulation waveform matter?, J. Thorac. Cardiovasc. Surg., 144 (2012), 970-977. doi: 10.1016/j.jtcvs.2012.02.015 |
[43] | F. Castagna, E. J. Stohr, A. Pinsino, J. R. Cockcroft, J. Willey, A. R. Garan, et al., The Unique Blood Pressures and Pulsatility of LVAD Patients: Current Challenges and Future Opportunities, Curr. Hypertens. Rep., 19 (2017). |
[44] | D. Ambrosi, A. Quarteroni, G. Rozza, Modeling of physiological flows: Springer Science & Business Media. 2012. |
[45] | T. Koeppl, G. Santin, B. Haasdonk, R. Helmig, Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods, Int. J. Numer. Methods Biomed. Eng., 34 (2018), 1-24. |
[46] | F. Y. Liang, S. Takagi, R. Himeno, H. Liu, Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses, Medi. Biol. Eng. Comput., 47 (2009), 743-755. doi: 10.1007/s11517-009-0449-9 |