For wearable electrocardiogram (ECG) acquisition, it was easy to infer motion artifices and other noises. In this paper, a novel end-to-end ECG denoising method was proposed, which was implemented by fusing the Efficient Channel Attention (ECA-Net) and the cycle consistent generative adversarial network (CycleGAN) method. The proposed denoising model was optimized by using the ECA-Net method to highlight the key features and introducing a new loss function to further extract the global and local ECG features. The original ECG signal came from the MIT-BIH Arrhythmia Database. Additionally, the noise signals used in this method consist of a combination of Gaussian white noise and noises sourced from the MIT-BIH Noise Stress Test Database, including EM (Electrode Motion Artifact), BW (Baseline Wander) and MA (Muscle Artifact), as well as mixed noises composed of EM+BW, EM+MA, BW+MA and EM+BW+MA. Moreover, corrupted ECG signals were generated by adding different levels of single and mixed noises to clean ECG signals. The experimental results show that the proposed method has better denoising performance and generalization ability with higher signal-to-noise ratio improvement (SNRimp), as well as lower root-mean-square error (RMSE) and percentage-root-mean-square difference (PRD).
Citation: Peng Zhang, Mingfeng Jiang, Yang Li, Ling Xia, Zhefeng Wang, Yongquan Wu, Yaming Wang, Huaxiong Zhang. An efficient ECG denoising method by fusing ECA-Net and CycleGAN[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 13415-13433. doi: 10.3934/mbe.2023598
[1] | Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035 |
[2] | Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525 |
[3] | Ardak Kashkynbayev, Daiana Koptleuova . Global dynamics of tick-borne diseases. Mathematical Biosciences and Engineering, 2020, 17(4): 4064-4079. doi: 10.3934/mbe.2020225 |
[4] | Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250 |
[5] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[6] | A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464 |
[7] | N. H. AlShamrani, A. M. Elaiw . Stability of an adaptive immunity viral infection model with multi-stages of infected cells and two routes of infection. Mathematical Biosciences and Engineering, 2020, 17(1): 575-605. doi: 10.3934/mbe.2020030 |
[8] | Ning Bai, Rui Xu . Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18(2): 1689-1707. doi: 10.3934/mbe.2021087 |
[9] | Jinliang Wang, Jingmei Pang, Toshikazu Kuniya . A note on global stability for malaria infections model with latencies. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995 |
[10] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
For wearable electrocardiogram (ECG) acquisition, it was easy to infer motion artifices and other noises. In this paper, a novel end-to-end ECG denoising method was proposed, which was implemented by fusing the Efficient Channel Attention (ECA-Net) and the cycle consistent generative adversarial network (CycleGAN) method. The proposed denoising model was optimized by using the ECA-Net method to highlight the key features and introducing a new loss function to further extract the global and local ECG features. The original ECG signal came from the MIT-BIH Arrhythmia Database. Additionally, the noise signals used in this method consist of a combination of Gaussian white noise and noises sourced from the MIT-BIH Noise Stress Test Database, including EM (Electrode Motion Artifact), BW (Baseline Wander) and MA (Muscle Artifact), as well as mixed noises composed of EM+BW, EM+MA, BW+MA and EM+BW+MA. Moreover, corrupted ECG signals were generated by adding different levels of single and mixed noises to clean ECG signals. The experimental results show that the proposed method has better denoising performance and generalization ability with higher signal-to-noise ratio improvement (SNRimp), as well as lower root-mean-square error (RMSE) and percentage-root-mean-square difference (PRD).
As we know, one of the most common ways to study the asymptotic stability for a system of delay differential equations (DDEs) is the Lyapunov functional method. For DDEs, the Lyapunov-LaSalle theorem (see [6,Theorem 5.3.1] or [11,Theorem 2.5.3]) is often used as a criterion for the asymptotic stability of an autonomous (possibly nonlinear) delay differential system. It can be applied to analyse the dynamics properties for lots of biomathematical models described by DDEs, for example, virus infection models (see, e.g., [2,3,10,14]), microorganism flocculation models (see, e.g., [4,5,18]), wastewater treatment models (see, e.g., [16]), etc.
In the Lyapunov-LaSalle theorem, a Lyapunov functional plays an important role. But how to construct an appropriate Lyapunov functional to investigate the asymptotic stability of DDEs, is still a very profound and challenging topic.
To state our purpose, we take the following microorganism flocculation model with time delay in [4] as example:
{˙x(t)=1−x(t)−h1x(t)y(t),˙y(t)=rx(t−τ)y(t−τ)−y(t)−h2y(t)z(t),˙z(t)=1−z(t)−h3y(t)z(t), | (1.1) |
where
G={ϕ=(ϕ1,ϕ2,ϕ3)T∈C+:=C([−τ,0],R3+) : ϕ1≤1, ϕ3≤1}. |
In model (1.1), there exists a forward bifurcation or backward bifurcation under some conditions [4]. Thus, it is difficult to use the research methods that some virus models used to study the dynamics of such model.
Clearly, (1.1) always has a microorganism-free equilibrium
L(ϕ)=ϕ2(0)+r∫0−τϕ1(θ)ϕ2(θ)dθ, ϕ∈G. | (1.2) |
The derivative of
˙L(ut)=(rx(t)−1−h2z(t))y(t)≤(r−1−h2z(t))y(t). | (1.3) |
Obviously, if
However, we can not get
lim inft→∞z(t)≥h1h1+rh3. | (1.4) |
If
˙V(ut)≤[r−1−h1h2ε(h1+rh3)]y(t)≤0, t≥T. |
Obviously, for all
In this paper, we will expand the view of constructing Lyapunov functionals, namely, we first give a new understanding of Lyapunov-LaSalle theorem (including its modified version [9,15,19]), and based on it establish some global stability criteria for an autonomous delay differential system.
Let
˙u(t)=g(ut), t≥0, | (2.1) |
where
˙L(ϕ)=˙L(ϕ)|(2.1)=lim sups→0+L(us(ϕ))−L(ϕ)s. |
Let
u(t)=u(t,ϕ):=(u1(t,ϕ),u2(t,ϕ),⋯,un(t,ϕ))T |
denote a solution of system (2.1) satisfying
U(t):=ut(⋅):X→X (which also satisfies U(t):¯X→¯X), |
and for
OT(ϕ):={ut(ϕ):t≥T}. |
Let
The following Definition 2.1 and Theorem 2.1 (see, e.g., [6,Theorem 5.3.1], [11,Theorem 2.5.3]) can be utilized in dynamics analysis of lots of biomathematical models in the form of system (2.1).
Definition 2.1. We call
(ⅰ)
(ⅱ)
Theorem 2.1 (Lyapunov-LaSalle theorem [11]). Let
In Theorem 2.1, a Lyapunov functional
X={ϕ=(ϕ1,ϕ2,⋯,ϕn)T∈C:ϕi(0)>0}, | (2.2) |
which can ensure
However, we will assume that
Corollary 2.1. Let the solution
Proof. It is clear that if
Remark 2.1. It is not difficult to find that in the modified Lyapunov-LaSalle theorem (see, e.g., [9,15,19]), if
Remark 2.2. In fact, we can see that a bounded
From Corollary 2.1, we may consider the global properties of system (2.1) on the larger space than
Let
Theorem 3.1. Suppose that the following conditions hold:
(ⅰ) Let
˙L(φ)≤−w(φ)b(φ), | (3.1) |
where
(ⅱ) There exist
k1≤φ≤k2, w(φ)≥(w01,w02,⋯,w0k)≡w0=w0(k1,k2)≫0, |
and
Then
Proof. To obtain
lim inft→∞w(ut(ϕ)):=(lim inft→∞w1(ut(ϕ)),lim inft→∞w2(ut(ϕ)),⋯,lim inft→∞wk(ut(ϕ)))=(limm→∞f1(t1m),limm→∞f2(t2m),⋯,limm→∞fk(tkm)). |
For each sequence
lim inft→∞wi(ut(ϕ))=limm→∞wi(utim(ϕ))=wi(ϕi). |
By the condition (ⅱ),
˙L(φ)≤−w(φ)b(φ)≤−w0b(φ)2≤0. |
Hence,
Next, we show that
˙L(ut(ψ))≤−w(ut(ψ))b(ut(ψ)), ∀t≥0. |
By (ⅱ),
Remark 3.1. By
Next, we will give an illustration for Theorem 3.1. Now, we reconsider the global stability for the infection-free equilibrium
{˙x(t)=s−dx(t)−cx(t)y(t)−βx(t)v(t),˙y(t)=e−μτβx(t−τ)v(t−τ)−py(t),˙v(t)=ky(t)−uv(t), | (3.2) |
where
In [1], we know
G={ϕ∈C([−τ,0],R3+):ϕ1≤x0}⊂C+:=C([−τ,0],R3+). |
Indeed, by Theorem 3.1, we can extend the result of [1] to the larger set
Corollary 3.1. If
Proof. It is not difficult to obtain
L(ϕ)=ϕ1(0)−x0−x0lnϕ1(0)x0+a1ϕ2(0)+a1e−μτ∫0−τβϕ1(θ)ϕ3(θ)dθ+a2ϕ3(0), | (3.3) |
where
a1=2(kβx0+ucx0)pu−e−μτkβx0,a2=2(pβx0+e−μτcβx20)pu−e−μτkβx0. |
Let
w(φ)≡(dφ1(0),a1p−a2k−cx0,a2u−a1e−μτβφ1(0)−βx0)≥(dx0,a1p−a2k−cx0,a2u−a1e−μτβx0−βx0)=(dx0,cx0,βx0)≡w0≫0, |
where
The derivative of
˙L1(ut)=d(x0−x(t))(1−x0x(t))+x0(cy(t)+βv(t))−x(t)(cy(t)+βv(t))+a1e−μτβx(t)v(t)−a1py(t)+a2ky(t)−a2uv(t)≤−dx(t)(x0−x(t))2−(a1p−a2k−cx0)y(t)−(a2u−a1e−μτβx(t)−βx0)v(t)=−w(ut)b(ut). |
Therefore, it follows from Theorem 3.1 that
In [3,Theorem 3.1], the infection-free equilibrium
Theorem 3.2. In the condition (ii) of Theorem 3.1, if the condition that
Proof. In the foundation of the similar argument as in the proof of Theorem 3.1, we have that
˙L(ut(ψ))≤−w0b(ut(ψ))≤0. |
Hence,
Next, by using Theorem 3.2, we will give the global stability of the equilibrium
˙L(ut)≤−w(ut)b(ut), | (3.4) |
where
w(ut)=1+h2zt(0)−r=1+h2z(t)−r,b(ut)=yt(0)=y(t). |
Let
p(t)=rh1xt(−τ)+yt(0)=rh1x(t−τ)+y(t), t≥τ. |
Then we have
lim inft→∞x(t)≥1r+1, lim inft→∞z(t)≥h1h1+rh3. | (3.5) |
Thus, for any
(1/(r+1),0,h1/(h1+rh3))T≤φ≤(1,r/h1,1)T,w(φ)=1+h2φ3(0)−r≥1+h1h2/(h1+rh3)−r≡w0>0, |
and
Thus, we only need to obtain the solutions of a system are bounded and then may establish the upper- and lower-bound estimates of
Corollary 3.2. Let
a(φ(0))≤L(φ), ˙L(φ)≤−w0b(φ), 0≪wT0∈Rk, | (3.6) |
where
Proof. Since
a(u(t,ϕ))≤L(ut(ϕ))≤L(uT(ϕ)), t∈[T,εϕ), |
and the fact that
Corollary 3.3. Assume that
a(|φ(0)−E|)≤L(φ), ˙L(φ)≤−w0b(φ), 0≪wT0∈Rk, | (3.7) |
where
Proof. It follows from Corollary 3.2 that the boundedness of
ut(ϕ)∈B(ut(E),ε)=B(E,ε), |
where
a(|u(t,ϕ)−E|)≤L(ut(ϕ))≤L(uT(ϕ))<a(ε), |
which yields
Lemma 3.1. ([13,Lemma 1.4.2]) For any infinite positive definite function
By Lemma 3.1, we have the following remark.
Remark 3.2. If there exists an infinite positive definite function
Corollary 3.4. In Corollary 3.2, if the condition
For a dissipative system (2.1), we will give the upper- and lower-bound estimates of
Lemma 3.2. Let
Proof. For any
Theorem 3.3. Suppose that there exist
k1≤lim inft→∞ut(ϕ)(θ)≤lim supt→∞ut(ϕ)(θ)≤k2, ∀ϕ∈X, ∀θ∈[−τ,0], | (3.8) |
where
lim inft→∞ut(ϕ)(θ):=(lim inft→∞u1t(ϕ)(θ),⋯,lim inft→∞unt(ϕ)(θ))T,lim supt→∞ut(ϕ)(θ):=(lim supt→∞u1t(ϕ)(θ),⋯,lim supt→∞unt(ϕ)(θ))T. |
Then
Proof. Clearly,
|˙u(t,φ)|≤M1, ∀t≥0, ∀φ∈M. |
It follows from the invariance of
In this paper, we first give a variant of Theorem 2.1, see Corollary 2.1. In fact, the modified version of Lyapunov-LaSalle theorem (see, e.g., [9,15,19]) is to expand the condition (ⅰ) of Definition 2.1, while Corollary 2.1 is mainly to expand the condition (ⅱ) of Definition 2.1. More specifically, we assume that
As a result, the criteria for the global attractivity of equilibria of system (2.1) are given in Theorem 3.1 and Theorem 3.2, respectively. As direct consequences, we also give the corresponding particular cases of Theorem 3.1 and Theorem 3.2, see Corollaries 3.2, 3.3 and 3.4, respectively. The developed theory can be utilized in many models (see, e.g., [2,3,9,10,14]). The compactness and the upper- and lower-bound estimates of
This work was supported in part by the General Program of Science and Technology Development Project of Beijing Municipal Education Commission (No. KM201910016001), the Fundamental Research Funds for Beijing Universities (Nos. X18006, X18080 and X18017), the National Natural Science Foundation of China (Nos. 11871093 and 11471034). The authors would like to thank Prof. Xiao-Qiang Zhao for his valuable suggestions.
The authors declare there is no conflict of interest in this paper.
[1] |
J. Wang, R. Li, R. Li, B. Fu, A knowledge-based deep learning method for ECG signal delineation, Future Gener. Comput. Syst., 109 (2020), 56−66. https://doi.org/10.1016/j.future.2020.02.068 doi: 10.1016/j.future.2020.02.068
![]() |
[2] | J. Y. Seo, Y. H. Noh, D. U. Jeong, Research of the deep learning model for denoising of ECG signal and classification of arrhythmias, in International Conference on Intelligent Human Computer Interaction, (2022), 198−204. https://doi.org/10.1007/978-3-030-98404-5_19 |
[3] |
P. Singh, G. Pradhan, S. Shahnawazuddin, Denoising of ECG signal by non-local estimation of approximation coefficients in DWT, Biocybern. Biomed. Eng., 37 (2017), 599−610. https://doi.org/10.1016/j.bbe.2017.06.001 doi: 10.1016/j.bbe.2017.06.001
![]() |
[4] |
H. Hao, H. Wang, N. ur Rehman, L. Chen, H. Tian, An improved multivariate wavelet denoising method using subspace projection, IEICE Trans. Fundamentals Electron. Commun. Comput. Sci., 100 (2017), 769−775. https://doi.org/10.1587/transfun.E100.A.769 doi: 10.1587/transfun.E100.A.769
![]() |
[5] |
Z. Wang, J. Zhu, T. Yan, L. Yang, A new modified wavelet-based ECG denoising, Comput. Assisted Surg., 24 (2019), 174−183. https://doi.org/10.1080/24699322.2018.1560088 doi: 10.1080/24699322.2018.1560088
![]() |
[6] |
Y. Ye, W. He, Y. Cheng, W. Huang, Z. Zhang, A robust random forest-based approach for heart rate monitoring using photoplethysmography signal contaminated by intense motion artifacts, Sensors, 17 (2017), 385. https://doi.org/10.3390/s17020385 doi: 10.3390/s17020385
![]() |
[7] |
M. Zhang, G. Wei, An integrated EMD adaptive threshold denoising method for reduction of noise in ECG, PLoS One, 15 (2020), e0235330. https://doi.org/10.1371/journal.pone.0235330 doi: 10.1371/journal.pone.0235330
![]() |
[8] |
D. Zhang, S. Wang, F. Li, S. Tian, J. Wang, X. Ding, et al., An efficient ECG denoising method based on empirical mode decomposition, sample entropy, and improved threshold function, Wireless Commun. Mobile Comput., 2020 (2020). https://doi.org/10.1155/2020/8811962 doi: 10.1155/2020/8811962
![]() |
[9] | W. He, Y. Ye, Y. Li, H. Xu, L. Lu, W. Huang, et al., Variational mode decomposition-based heart rate estimation using wrist-type photoplethysmography during physical exercise, in 2018 24th International Conference on Pattern Recognition (ICPR), (2018), 3766−3771. https://doi.org/10.1109/ICPR.2018.8545685 |
[10] | Y. Wang, D. Bai, Application of wavelet threshold method based on optimized VMD to ECG denoising, in 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), (2021), 741−744. https://doi.org/10.1109/ICFTIC54370.2021.9647050 |
[11] |
B. Yang, Y. Dong, C. Yu, Z. Hou, Singular spectrum analysis window length selection in processing capacitive captured biopotential signals, IEEE Sens. J., 16 (2016), 7183–7193. https://doi.org/10.1109/JSEN.2016.2594189 doi: 10.1109/JSEN.2016.2594189
![]() |
[12] |
S. K. Mukhopadhyay, S. Krishnan, A singular spectrum analysis-based model-free electrocardiogram denoising technique, Comput. Methods Programs Biomed., 188 (2020), 1−15. https://doi.org/10.1016/j.cmpb.2019.105304 doi: 10.1016/j.cmpb.2019.105304
![]() |
[13] |
H. Sharma, K. K. Sharma, Baseline wander removal of ECG signals using Hilbert vibration decomposition, Electron. Lett., 51 (2015), 447−449. https://doi.org/10.1049/el.2014.4076 doi: 10.1049/el.2014.4076
![]() |
[14] |
B. R. Manju, M. R. Sneha, ECG denoising using wiener filter and kalman filter, Procedia Comput. Sci., 171 (2020), 273−281. https://doi.org/10.1016/j.procs.2020.04.029 doi: 10.1016/j.procs.2020.04.029
![]() |
[15] |
S. M. Qaisar, Baseline wander and power-line interference elimination of ECG signals using efficient signal-piloted filtering, Healthcare Technol. Lett., 7 (2020), 114−118. https://doi.org/10.1049/htl.2019.0116 doi: 10.1049/htl.2019.0116
![]() |
[16] |
S. A. Malik, S. A. Parah, B. A. Malik, Power line noise and baseline wander removal from ECG signals using empirical mode decomposition and lifting wavelet transform technique, Health Tech., 12 (2022), 745−756. https://doi.org/10.1007/s12553-022-00662-x doi: 10.1007/s12553-022-00662-x
![]() |
[17] |
B. Liu, Y. Li, ECG signal denoising based on similar segments cooperative filtering, Biomed. Signal Process. Control, 68 (2021), 102751. https://doi.org/10.1016/j.bspc.2021.102751 doi: 10.1016/j.bspc.2021.102751
![]() |
[18] |
J. Wang, Y. Ye, X. Pan, X. Gao, Parallel-type fractional zero-phase filtering for ECG signal denoising, Biomed. Signal Process. Control, 18 (2015), 36–41. https://doi.org/10.1016/j.bspc.2014.10.012 doi: 10.1016/j.bspc.2014.10.012
![]() |
[19] |
G. Wang, L. Yang, M. Liu, X. Yuan, P. Xiong, F. Lin, et al., ECG signal denoising based on deep factor analysis, Biomed. Signal Process. Control, 57 (2020), 101824. https://doi.org/10.1016/j.bspc.2019.101824 doi: 10.1016/j.bspc.2019.101824
![]() |
[20] | J. Y. Zhu, T. Park, P. Isola, A. A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 2223−2232. https://doi.org/10.1109/ICCV.2017.244 |
[21] |
S. Kiranyaz, O. C. Devecioglu, T. Ince, J. Malik, M. Chowdhury, T. Hamid, et al., Blind ECG restoration by operational cycle-GANs, IEEE Trans. Biomed. Eng., 69 (2022), 3572−3581. https://doi.org/10.1109/TBME.2022.3172125 doi: 10.1109/TBME.2022.3172125
![]() |
[22] |
S. Kiranyaz, J. Malik, H. B. Abdallah, T. Ince, A. Iosifidis, M. Gabbouj, Self-organized operational neural networks with generative neurons, Neural Networks, 140 (2021), 294−308. https://doi.org/10.1016/j.neunet.2021.02.028 doi: 10.1016/j.neunet.2021.02.028
![]() |
[23] |
J. Malik, S. Kiranyaz, M. Gabbouj, Self-organized operational neural networks for severe image restoration problems, Neural Networks, 135 (2021), 201−211. https://doi.org/10.1016/j.neunet.2020.12.014 doi: 10.1016/j.neunet.2020.12.014
![]() |
[24] | K. Antczak, Deep recurrent neural networks for ECG signal denoising, preprint, arXiv: 1807.11551. |
[25] | V. Mnih, N. Heess, A. Graves, K. Kavukcuoglu, Recurrent models of visual attention, in Proceedings of the 27th International Conference on Neural Information Processing Systems, 2 (2014), 2204−2212. Available from: https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf. |
[26] |
L. Qiu, W. Cai, M. Zhang, W. Zhu, L. Wang, Two-stage ECG signal denoising based on deep convolutional network, Physiol. Meas., 42 (2021), 115002. https://doi.org/10.1088/1361-6579/ac34ea doi: 10.1088/1361-6579/ac34ea
![]() |
[27] | J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 7132−7141. https://doi.org/10.1109/cvpr.2018.00745 |
[28] | Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: efficient channel attention for deep convolutional neural networks, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 11531−11539. https://doi.org/10.1109/cvpr42600.2020.01155 |
[29] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., Generative adversarial networks, Commun. ACM, 63 (2020), 139−144. https://doi.org/10.1145/3422622 doi: 10.1145/3422622
![]() |
[30] | T. Zhou, P. Krähenbühl, M. Aubry, Q. Huang, A. A. Efros, Learning dense correspondence via 3d-guided cycle consistency, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 117−126. https://doi.org/10.1109/cvpr.2016.20 |
[31] |
S. Pascual, A. Bonafonte, J. Serra, SEGAN: Speech enhancement generative adversarial network, Proc. Interspeech, (2017), 3642–3646. https://doi.org/10.21437/interspeech.2017-1428 doi: 10.21437/interspeech.2017-1428
![]() |
[32] |
J. Wang, R. Li, R. Li, K. Li, H. Zeng, G. Xie, et al., Adversarial de-noising of electrocardiogram, Neurocomputing, 349 (2019), 212−224. https://doi.org/10.1016/j.neucom.2019.03.083 doi: 10.1016/j.neucom.2019.03.083
![]() |
[33] |
Z. Wang, F. Wan, C. M. Wong, L. Zhang, Adaptive Fourier decomposition based ECG denoising, Comput. Biol. Med., 77 (2016), 195−205. https://doi.org/10.1016/j.compbiomed.2016.08.013 doi: 10.1016/j.compbiomed.2016.08.013
![]() |
1. | Jing-An Cui, Shifang Zhao, Songbai Guo, Yuzhen Bai, Xiaojing Wang, Tianmu Chen, Global dynamics of an epidemiological model with acute and chronic HCV infections, 2020, 103, 08939659, 106203, 10.1016/j.aml.2019.106203 | |
2. | Jinlong Lv, Songbai Guo, Jing-An Cui, Jianjun Paul Tian, Asymptomatic transmission shifts epidemic dynamics, 2021, 18, 1551-0018, 92, 10.3934/mbe.2021005 | |
3. | Yunzhe Su, Yajun Yang, Xuerong Yang, Wei Ye, Attitude tracking control for observation spacecraft flying around the target spacecraft, 2021, 15, 1751-8644, 1868, 10.1049/cth2.12165 | |
4. | Yujie Sheng, Jing-An Cui, Songbai Guo, The modeling and analysis of the COVID-19 pandemic with vaccination and isolation: a case study of Italy, 2023, 20, 1551-0018, 5966, 10.3934/mbe.2023258 | |
5. | Yu-zhen Bai, Xiao-jing Wang, Song-bai Guo, Global Stability of a Mumps Transmission Model with Quarantine Measure, 2021, 37, 0168-9673, 665, 10.1007/s10255-021-1035-7 | |
6. | Song-bai Guo, Min He, Jing-an Cui, Global Stability of a Time-delayed Malaria Model with Standard Incidence Rate, 2023, 0168-9673, 10.1007/s10255-023-1042-y | |
7. | Iasson Karafyllis, Pierdomenico Pepe, Antoine Chaillet, Yuan Wang, 2022, Uniform Global Asymptotic Stability for Time-Invariant Delay Systems, 978-1-6654-6761-2, 6875, 10.1109/CDC51059.2022.9992709 | |
8. | Iasson Karafyllis, Pierdomenico Pepe, Antoine Chaillet, Yuan Wang, Is Global Asymptotic Stability Necessarily Uniform for Time-Invariant Time-Delay Systems?, 2022, 60, 0363-0129, 3237, 10.1137/22M1485887 | |
9. | Leilei Xue, Liping Sun, Songbai Guo, Dynamic effects of asymptomatic infections on malaria transmission, 2023, 214, 03784754, 172, 10.1016/j.matcom.2023.07.004 | |
10. | 勇盛 赵, Dynamical Analysis of a COVID-19 Transmission Model with Vaccination, 2024, 13, 2324-7991, 1187, 10.12677/aam.2024.134109 | |
11. | Ke Guo, Songbai Guo, Lyapunov functionals for a general time-delayed virus dynamic model with different CTL responses, 2024, 34, 1054-1500, 10.1063/5.0204169 | |
12. | Songbai Guo, Min He, Fuxiang Li, Threshold dynamics of a time-delayed dengue virus infection model incorporating vaccination failure and exposed mosquitoes, 2025, 161, 08939659, 109366, 10.1016/j.aml.2024.109366 | |
13. | Songbai Guo, Qianqian Pan, Jing‐An Cui, P. Damith Nilanga Silva, Global behavior and optimal control of a dengue transmission model with standard incidence rates and self‐protection, 2024, 0170-4214, 10.1002/mma.10351 | |
14. | Songbai Guo, Xin Yang, Zuohuan Zheng, Global dynamics of a time-delayed malaria model with asymptomatic infections and standard incidence rate, 2023, 31, 2688-1594, 3534, 10.3934/era.2023179 | |
15. | Dongfang Li, Yilong Zhang, Wei Tong, Ping Li, Rob Law, Xin Xu, Limin Zhu, Edmond Q. Wu, Anti-Disturbance Path-Following Control for Snake Robots With Spiral Motion, 2023, 19, 1551-3203, 11929, 10.1109/TII.2023.3254534 | |
16. | 欣 李, Dynamic Analysis of a Syphilis Infectious Disease Model with Early Screening, 2024, 13, 2324-7991, 3722, 10.12677/aam.2024.138355 | |
17. | Songbai Guo, Yuling Xue, Rong Yuan, Maoxing Liu, An improved method of global dynamics: Analyzing the COVID-19 model with time delays and exposed infection, 2023, 33, 1054-1500, 10.1063/5.0144553 | |
18. | Xiaojing Wang, Jiahui Li, Songbai Guo, Maoxing Liu, Dynamic analysis of an Ebola epidemic model incorporating limited medical resources and immunity loss, 2023, 69, 1598-5865, 4229, 10.1007/s12190-023-01923-2 |