Research article Special Issues

Analysis of a heterogeneous SEIRS patch model with asymmetric mobility kernel


  • Received: 22 March 2023 Revised: 29 May 2023 Accepted: 07 June 2023 Published: 12 June 2023
  • In this paper, we establish a spatial heterogeneous SEIRS patch model with asymmetric mobility kernel. The basic reproduction ratio $ \mathcal{R}_{0} $ is defined, and threshold-type results on global dynamics are investigated in terms of $ \mathcal{R}_{0} $. In certain cases, the monotonicity of $ \mathcal{R}_{0} $ with respect to the heterogeneous diffusion coefficients is established, but this is not true in all cases. Finally, when the diffusion rate of susceptible individuals approaches zero, the long-term behavior of the endemic equilibrium is explored. In contrast to most prior studies, which focused primarily on the mobility of susceptible and symptomatic infected individuals, our findings indicate the significance of the mobility of exposed and recovered persons in disease dynamics.

    Citation: Shuangshuang Yin, Jianhong Wu, Pengfei Song. Analysis of a heterogeneous SEIRS patch model with asymmetric mobility kernel[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 13434-13456. doi: 10.3934/mbe.2023599

    Related Papers:

  • In this paper, we establish a spatial heterogeneous SEIRS patch model with asymmetric mobility kernel. The basic reproduction ratio $ \mathcal{R}_{0} $ is defined, and threshold-type results on global dynamics are investigated in terms of $ \mathcal{R}_{0} $. In certain cases, the monotonicity of $ \mathcal{R}_{0} $ with respect to the heterogeneous diffusion coefficients is established, but this is not true in all cases. Finally, when the diffusion rate of susceptible individuals approaches zero, the long-term behavior of the endemic equilibrium is explored. In contrast to most prior studies, which focused primarily on the mobility of susceptible and symptomatic infected individuals, our findings indicate the significance of the mobility of exposed and recovered persons in disease dynamics.



    加载中


    [1] R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-diffusion Equations, John Wiley and Sons, Ltd., Chichester, 2003.
    [2] J. D. Murray, Mathematical Biology, 2nd edition, Springer-Verlag, New York, 2002.
    [3] X. Q. Zhao, Dynamical Systems in Population Biology, 2nd edition, Springer, Cham, 2017.
    [4] L. Sattenspiel, The Geographic Spread of Infectious Diseases: Models and Applications, 2009.
    [5] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283–1309. https://doi.org/10.1137/060672522 doi: 10.1137/060672522
    [6] H. Li, R. Peng, Dynamics and asymptotic profiles of endemic equilibrium for sis epidemic patch models, J. Math. Biol., 79 (2019), 1279–1317. https://doi.org/10.1007/s00285-019-01395-8 doi: 10.1007/s00285-019-01395-8
    [7] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1–20. https://doi.org/10.3934/dcds.2008.21.1 doi: 10.3934/dcds.2008.21.1
    [8] W. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. https://doi.org/10.1137/120872942 doi: 10.1137/120872942
    [9] R. Peng, X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451–1471. https://doi.org/10.1088/0951-7715/25/5/1451 doi: 10.1088/0951-7715/25/5/1451
    [10] R. Cui, Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differ. Equations, 261 (2016), 3305–3343.
    [11] R. Cui, K. Y. Lam, Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differ. Equations, 263 (2017), 2343–2373. https://doi.org/10.1016/j.jde.2017.03.045 doi: 10.1016/j.jde.2017.03.045
    [12] K. Deng, Y. Wu, Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. R. Soc. Edinburgh Sect. A, 146 (2016), 929–946. https://doi.org/10.1017/S0308210515000864 doi: 10.1017/S0308210515000864
    [13] Y. Wu, X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differ. Equations, 261 (2016), 4424–4447. https://doi.org/10.1016/j.jde.2016.06.028 doi: 10.1016/j.jde.2016.06.028
    [14] H. Li, R. Peng, F. B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differ. Equations, 262 (2017), 885–913. https://doi.org/10.1016/j.jde.2016.09.044 doi: 10.1016/j.jde.2016.09.044
    [15] H. Li, R. Peng, T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, Eur. J. Appl. Math., 31 (2020), 26–56. https://doi.org/10.1017/S0956792518000463 doi: 10.1017/S0956792518000463
    [16] S. Chen, J. Shi, Z. Shuai, Y. Wu, Asymptotic profiles of the steady states for an SIS epidemic patch model with asymmetric connectivity matrix, J. Math. Biol., 80 (2020), 2327–2361. https://doi.org/10.1007/s00285-020-01497-8 doi: 10.1007/s00285-020-01497-8
    [17] S. Chen, J. Shi, Z. Shuai, Y. Wu, Spectral monotonicity of perturbed quasi-positive matrices with applications in population dynamics, preprint, arXiv: 1911.02232.
    [18] J. Qiu, Covert coronavirus infections could be seeding new outbreaks, Nature, 2020. https://doi.org/10.1038/d41586-020-00822-x
    [19] P. Song, Y. Lou, Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differ. Equations, 267 (2019), 5084–5114. https://doi.org/10.1016/j.jde.2019.05.022 doi: 10.1016/j.jde.2019.05.022
    [20] D. Gao, S. Ruan, A multipatch mararia model with logistic growth population, SIAM J. Appl. Math., 72 (2012), 819–841. https://doi.org/10.1137/110850761 doi: 10.1137/110850761
    [21] Y. Xiao, X. Zou, Transmission dynamics for vector-borne diseases in a patchy environment, J. Math. Biol., 69 (2014), 113–146. https://doi.org/10.1007/s00285-013-0695-1 doi: 10.1007/s00285-013-0695-1
    [22] G. K. Zipf, The PJVD hypothesis on the intercity movement of persons, in American Sociological Review, 1946.
    [23] M. Barthelemy, Spatial networks, Phys. Rep., 499 (2010), 1–101. https://doi.org/10.1016/j.physrep.2010.11.002
    [24] F. Simini, M. C. Gonzalez, A. Maritan, A. L. Barabasi, A universal model for mobility and migration patterns, Nature, 484 (2012), 96–100. https://doi.org/10.1038/nature10856 doi: 10.1038/nature10856
    [25] O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, John Wiley and Sons Ltd, Chichester, New York, 2000.
    [26] R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Cambridge University Press, 1991.
    [27] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324. doi: 10.1007/BF00178324
    [28] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [29] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. https://doi.org/10.1137/080732870 doi: 10.1137/080732870
    [30] J. K. Hale, Dynamical systems and stability, J. Math. Anal. Appl., 26 (1969), 39–59. https://doi.org/10.1016/0022-247X(69)90175-9 doi: 10.1016/0022-247X(69)90175-9
    [31] D. S. Bernstein, Scalar, vector, and matrix mathematics, in Scalar, Vector, and Matrix Mathematics, Princeton university press, 2018. https://doi.org/10.1515/9781400888252
    [32] G. Degla, An overview of semi-continuity results on the spectral radius and positivity, J. Math. Anal. Appl., 338 (2008), 101–110. https://doi.org/10.1016/j.jmaa.2007.05.011 doi: 10.1016/j.jmaa.2007.05.011
    [33] F. R. Gantmakher, The Theory of Matrices, American Mathematical Soc., 2000.
    [34] J. K. Hale, Ordinary Differential Equations, Robert E. Krieget Publishing Company, INC., 1980.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1092) PDF downloads(91) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog