This paper examines the distributed filtering and fixed-point smoothing problems for networked systems, considering random parameter matrices, time-correlated additive noises and random deception attacks. The proposed distributed estimation algorithms consist of two stages: the first stage creates intermediate estimators based on local and adjacent node measurements, while the second stage combines the intermediate estimators from neighboring sensors using least-squares matrix-weighted linear combinations. The major contributions and challenges lie in simultaneously considering various network-induced phenomena and providing a unified framework for systems with incomplete information. The algorithms are designed without specific structure assumptions and use a covariance-based estimation technique, which does not require knowledge of the evolution model of the signal being estimated. A numerical experiment demonstrates the applicability and effectiveness of the proposed algorithms, highlighting the impact of observation uncertainties and deception attacks on estimation accuracy.
Citation: Raquel Caballero-Águila, María J. García-Ligero, Aurora Hermoso-Carazo, Josefa Linares-Pérez. Unreliable networks with random parameter matrices and time-correlated noises: distributed estimation under deception attacks[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14550-14577. doi: 10.3934/mbe.2023651
This paper examines the distributed filtering and fixed-point smoothing problems for networked systems, considering random parameter matrices, time-correlated additive noises and random deception attacks. The proposed distributed estimation algorithms consist of two stages: the first stage creates intermediate estimators based on local and adjacent node measurements, while the second stage combines the intermediate estimators from neighboring sensors using least-squares matrix-weighted linear combinations. The major contributions and challenges lie in simultaneously considering various network-induced phenomena and providing a unified framework for systems with incomplete information. The algorithms are designed without specific structure assumptions and use a covariance-based estimation technique, which does not require knowledge of the evolution model of the signal being estimated. A numerical experiment demonstrates the applicability and effectiveness of the proposed algorithms, highlighting the impact of observation uncertainties and deception attacks on estimation accuracy.
[1] | U. Singh, A. Abraham, A. Kaklauskas, T. Hong, Smart Sensor Networks. Analytics, Sharing and Control, Springer, Switzerland, 2022. https://doi.org/10.1007/978-3-030-77214-7 |
[2] | Z. Zhou, H. Xu, H. Feng, W. Li, A Non-Equal Time Interval Incremental Motion Prediction Method for Maritime Autonomous Surface Ships, Sensors, 23 (2023), 2852. https://doi.org/10.3390/s23052852 doi: 10.3390/s23052852 |
[3] | R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, Distributed fusion filters from uncertain measured outputs in sensor networks with random packet losses, Inform. Fusion, 34 (2017), 70–79. https://doi.org/10.1016/j.inffus.2016.06.008 doi: 10.1016/j.inffus.2016.06.008 |
[4] | J. Liu, Y. Gu, J. Cao, S. Fei, Distributed event-triggered $H_\infty$ filtering over sensor networks with sensor saturations and cyber-attacks, ISA Trans., 81 (2018), 63–75. https://doi.org/10.1016/j.isatra.2018.07.018 |
[5] | X. Bu, H. Dong, F. Han, N. Hou, G. Li, Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the round-robin protocol, Neurocomputing, 346 (2019), 58–64. https://doi.org/10.1016/j.neucom.2018.07.087 doi: 10.1016/j.neucom.2018.07.087 |
[6] | R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, Z. Wang, A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises, Inform. Fusion, 45 (2019), 324–332. https://doi.org/10.1016/j.inffus.2018.02.006 doi: 10.1016/j.inffus.2018.02.006 |
[7] | J. Hu, Z. Wang, G.-P. Liu, H. Zhang, R. Navaratne, A prediction-based approach to distributed filtering with missing measurements and communication delays through sensor networks, IEEE Trans. Syst. Man Cybern. -Syst., 51 (2021), 7063–7074. https://doi.org/10.1109/TSMC.2020.2966977 doi: 10.1109/TSMC.2020.2966977 |
[8] | J. Li, J. Hu, J. Cheng, Y. Wei, H. Yu, Distributed filtering for time-varying state-saturated systems with packet disorders: An event-triggered case, Appl. Math. Comput., 434 (2022), 127411. https://doi.org/10.1016/j.amc.2022.127411 doi: 10.1016/j.amc.2022.127411 |
[9] | M. Niu, G. Wen, Y. Lv, G. Chen, Innovation-based stealthy attack against distributed state estimation over sensor networks, Automatica, 152 (2023), 110962. https://doi.org/10.1016/j.automatica.2023.110962 doi: 10.1016/j.automatica.2023.110962 |
[10] | G. Yang, H. Rezaee, A. Alessandri, T. Parisini, State estimation using a network of distributed observers with switching communication topology, Automatica, 147 (2023), 110690. https://doi.org/10.1016/j.automatica.2022.110690 doi: 10.1016/j.automatica.2022.110690 |
[11] | J. Hu, Z. Wang, D. Chen, F. E. Alsaadi, Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects, Inform. Fusion, 31 (2016), 65–75. https://doi.org/10.1016/j.inffus.2016.01.001 doi: 10.1016/j.inffus.2016.01.001 |
[12] | S. Sun, H. Lin, J. Ma, X. Li, Multi-sensor distributed fusion estimation with applications in networked systems: A review paper, Inform. Fusion, 38 (2017), 122–134. https://doi.org/10.1016/j.inffus.2017.03.006 doi: 10.1016/j.inffus.2017.03.006 |
[13] | H. Geng, Z. Wang, Y. Cheng, F. Alsaadi, A. M. Dobaie, State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach, Signal Process., 154 (2019), 120–128. https://doi.org/10.1016/j.sigpro.2018.08.005 doi: 10.1016/j.sigpro.2018.08.005 |
[14] | W. Liu, P. Shi, Convergence of optimal linear estimator with multiplicative and time-correlated additive measurement noises, IEEE Trans. Autom. Control, 64 (2019), 2190–2197. https://doi.org/10.1109/TAC.2018.2869467 doi: 10.1109/TAC.2018.2869467 |
[15] | R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, Networked fusion estimation with multiple uncertainties and time-correlated channel noise, Inform. Fusion, 54 (2020), 161–171. https://doi.org/10.1016/j.inffus.2019.07.008 doi: 10.1016/j.inffus.2019.07.008 |
[16] | J. Ma, S. Sun, Optimal linear recursive estimators for stochastic uncertain systems with time-correlated additive noises and packet dropout compensations, Signal Process., 176 (2020), 107704. https://doi.org/10.1016/j.sigpro.2020.107704 doi: 10.1016/j.sigpro.2020.107704 |
[17] | R. Caballero-Águila, J. Hu, J. Linares-Pérez, Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses, Sensors, 22 (2022), 8505. https://doi.org/10.3390/s22218505 doi: 10.3390/s22218505 |
[18] | Q. Liu, Z. Wang, X. He, Stochastic Control and Filtering over Constrained Communication Networks, Springer, Switzerland, 2019. https://doi.org/10.1007/978-3-030-00157-5 |
[19] | F. Han, H. Dong, Z. Wang, G. Li, F. E. Alsaadi, Improved Tobit Kalman filtering for systems with random parameters via conditional expectation, Signal Process., 147 (2018), 35–45. http://dx.doi.org/10.1016/j.sigpro.2018.01.015 doi: 10.1016/j.sigpro.2018.01.015 |
[20] | R. Caballero-Águila, A. Hermoso-Caraz, J. oLinares-Pérez, Centralized filtering and smoothing algorithms from outputs with random parameter matrices transmitted through uncertain communication channels, Digit. Signal Process., 85 (2019), 77–85. https://doi.org/10.1016/j.dsp.2018.11.010 doi: 10.1016/j.dsp.2018.11.010 |
[21] | W. Liu, X. Xie, W. Qian, X. Xu, Y. Shi, Optimal linear filtering for networked control systems with random matrices, correlated noises, and packet dropouts, IEEE Access, 8 (2020), 59987–59997. http://dx.doi.org/10.1109/ACCESS.2020.2983122 doi: 10.1109/ACCESS.2020.2983122 |
[22] | S. Sun, Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises, IEEE Trans. Signal Process., 68 (2020), 1064–1074. https://doi.org/10.1109/TSP.2020.2967180 doi: 10.1109/TSP.2020.2967180 |
[23] | R. Caballero-Águila, J. Linares-Pérez, Distributed fusion filtering for uncertain systems with coupled noises, random delays and packet loss prediction compensation, Int. J. Syst. Sci., 54 (2023), 371–390. https://doi.org/10.1080/00207721.2022.2122905 doi: 10.1080/00207721.2022.2122905 |
[24] | M. S. Mahmoud, M. M. Hamdan, U. A. Baroudi, Modeling and control of Cyber-Physical Systems subject to cyber attacks: A survey of recent advances and challenges, Neurocomputing, 338 (2019), 101–115. https://doi.org/10.1016/j.neucom.2019.01.099 doi: 10.1016/j.neucom.2019.01.099 |
[25] | Z. Wang, D. Wang, B. Shen, F. E. Alsaadi, Centralized security-guaranteed filtering in multirate-sensor fusion under deception attacks, J. Frankl. Inst., 355 (2018), 406–420. https://doi.org/10.1016/j.jfranklin.2017.11.010 doi: 10.1016/j.jfranklin.2017.11.010 |
[26] | F. Han, H. Dong, Z. Wang, G. Li, Local design of distributed H$_\infty$-consensus filtering over sensor networks under multiplicative noises and deception attacks, Int. J. Robust Nonlinear Control, 29 (2019), 2296–2314. https://doi.org/10.1002/rnc.4493 doi: 10.1002/rnc.4493 |
[27] | R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, A two-phase distributed filtering algorithm for networked uncertain systems with fading measurements under deception attacks, Sensors, 20 (2020), 6445. https://doi.org/10.3390/s20226445 doi: 10.3390/s20226445 |
[28] | S. Xiao, Q. Han, X. Ge, Y. Zhang, Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks, IEEE Trans. Cybern., 50 (2020), 1200–1228. https://doi.org/10.1109/tcyb.2019.2900478 doi: 10.1109/tcyb.2019.2900478 |
[29] | L. Ma, Z. Wang, Y. Chen, X. Yi, Probability-guaranteed distributed secure estimation for nonlinear systems over sensor networks under deception attacks on innovations, IEEE Trans. Signal Inf. Proc. Netw., 7 (2021), 465–477. https://doi.org/10.1109/TSIPN.2021.3097217 doi: 10.1109/TSIPN.2021.3097217 |
[30] | Y. Ma, S. Sun, Distributed Optimal and Self-Tuning Filters Based on Compressed Data for Networked Stochastic Uncertain Systems with Deception Attacks, Sensors, 23 (2023), 335. https://doi.org/10.3390/s23010335 doi: 10.3390/s23010335 |