Research article Special Issues

Unreliable networks with random parameter matrices and time-correlated noises: distributed estimation under deception attacks

  • Received: 03 May 2023 Revised: 23 June 2023 Accepted: 26 June 2023 Published: 05 July 2023
  • This paper examines the distributed filtering and fixed-point smoothing problems for networked systems, considering random parameter matrices, time-correlated additive noises and random deception attacks. The proposed distributed estimation algorithms consist of two stages: the first stage creates intermediate estimators based on local and adjacent node measurements, while the second stage combines the intermediate estimators from neighboring sensors using least-squares matrix-weighted linear combinations. The major contributions and challenges lie in simultaneously considering various network-induced phenomena and providing a unified framework for systems with incomplete information. The algorithms are designed without specific structure assumptions and use a covariance-based estimation technique, which does not require knowledge of the evolution model of the signal being estimated. A numerical experiment demonstrates the applicability and effectiveness of the proposed algorithms, highlighting the impact of observation uncertainties and deception attacks on estimation accuracy.

    Citation: Raquel Caballero-Águila, María J. García-Ligero, Aurora Hermoso-Carazo, Josefa Linares-Pérez. Unreliable networks with random parameter matrices and time-correlated noises: distributed estimation under deception attacks[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14550-14577. doi: 10.3934/mbe.2023651

    Related Papers:

  • This paper examines the distributed filtering and fixed-point smoothing problems for networked systems, considering random parameter matrices, time-correlated additive noises and random deception attacks. The proposed distributed estimation algorithms consist of two stages: the first stage creates intermediate estimators based on local and adjacent node measurements, while the second stage combines the intermediate estimators from neighboring sensors using least-squares matrix-weighted linear combinations. The major contributions and challenges lie in simultaneously considering various network-induced phenomena and providing a unified framework for systems with incomplete information. The algorithms are designed without specific structure assumptions and use a covariance-based estimation technique, which does not require knowledge of the evolution model of the signal being estimated. A numerical experiment demonstrates the applicability and effectiveness of the proposed algorithms, highlighting the impact of observation uncertainties and deception attacks on estimation accuracy.



    加载中


    [1] U. Singh, A. Abraham, A. Kaklauskas, T. Hong, Smart Sensor Networks. Analytics, Sharing and Control, Springer, Switzerland, 2022. https://doi.org/10.1007/978-3-030-77214-7
    [2] Z. Zhou, H. Xu, H. Feng, W. Li, A Non-Equal Time Interval Incremental Motion Prediction Method for Maritime Autonomous Surface Ships, Sensors, 23 (2023), 2852. https://doi.org/10.3390/s23052852 doi: 10.3390/s23052852
    [3] R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, Distributed fusion filters from uncertain measured outputs in sensor networks with random packet losses, Inform. Fusion, 34 (2017), 70–79. https://doi.org/10.1016/j.inffus.2016.06.008 doi: 10.1016/j.inffus.2016.06.008
    [4] J. Liu, Y. Gu, J. Cao, S. Fei, Distributed event-triggered $H_\infty$ filtering over sensor networks with sensor saturations and cyber-attacks, ISA Trans., 81 (2018), 63–75. https://doi.org/10.1016/j.isatra.2018.07.018
    [5] X. Bu, H. Dong, F. Han, N. Hou, G. Li, Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the round-robin protocol, Neurocomputing, 346 (2019), 58–64. https://doi.org/10.1016/j.neucom.2018.07.087 doi: 10.1016/j.neucom.2018.07.087
    [6] R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, Z. Wang, A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises, Inform. Fusion, 45 (2019), 324–332. https://doi.org/10.1016/j.inffus.2018.02.006 doi: 10.1016/j.inffus.2018.02.006
    [7] J. Hu, Z. Wang, G.-P. Liu, H. Zhang, R. Navaratne, A prediction-based approach to distributed filtering with missing measurements and communication delays through sensor networks, IEEE Trans. Syst. Man Cybern. -Syst., 51 (2021), 7063–7074. https://doi.org/10.1109/TSMC.2020.2966977 doi: 10.1109/TSMC.2020.2966977
    [8] J. Li, J. Hu, J. Cheng, Y. Wei, H. Yu, Distributed filtering for time-varying state-saturated systems with packet disorders: An event-triggered case, Appl. Math. Comput., 434 (2022), 127411. https://doi.org/10.1016/j.amc.2022.127411 doi: 10.1016/j.amc.2022.127411
    [9] M. Niu, G. Wen, Y. Lv, G. Chen, Innovation-based stealthy attack against distributed state estimation over sensor networks, Automatica, 152 (2023), 110962. https://doi.org/10.1016/j.automatica.2023.110962 doi: 10.1016/j.automatica.2023.110962
    [10] G. Yang, H. Rezaee, A. Alessandri, T. Parisini, State estimation using a network of distributed observers with switching communication topology, Automatica, 147 (2023), 110690. https://doi.org/10.1016/j.automatica.2022.110690 doi: 10.1016/j.automatica.2022.110690
    [11] J. Hu, Z. Wang, D. Chen, F. E. Alsaadi, Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects, Inform. Fusion, 31 (2016), 65–75. https://doi.org/10.1016/j.inffus.2016.01.001 doi: 10.1016/j.inffus.2016.01.001
    [12] S. Sun, H. Lin, J. Ma, X. Li, Multi-sensor distributed fusion estimation with applications in networked systems: A review paper, Inform. Fusion, 38 (2017), 122–134. https://doi.org/10.1016/j.inffus.2017.03.006 doi: 10.1016/j.inffus.2017.03.006
    [13] H. Geng, Z. Wang, Y. Cheng, F. Alsaadi, A. M. Dobaie, State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach, Signal Process., 154 (2019), 120–128. https://doi.org/10.1016/j.sigpro.2018.08.005 doi: 10.1016/j.sigpro.2018.08.005
    [14] W. Liu, P. Shi, Convergence of optimal linear estimator with multiplicative and time-correlated additive measurement noises, IEEE Trans. Autom. Control, 64 (2019), 2190–2197. https://doi.org/10.1109/TAC.2018.2869467 doi: 10.1109/TAC.2018.2869467
    [15] R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, Networked fusion estimation with multiple uncertainties and time-correlated channel noise, Inform. Fusion, 54 (2020), 161–171. https://doi.org/10.1016/j.inffus.2019.07.008 doi: 10.1016/j.inffus.2019.07.008
    [16] J. Ma, S. Sun, Optimal linear recursive estimators for stochastic uncertain systems with time-correlated additive noises and packet dropout compensations, Signal Process., 176 (2020), 107704. https://doi.org/10.1016/j.sigpro.2020.107704 doi: 10.1016/j.sigpro.2020.107704
    [17] R. Caballero-Águila, J. Hu, J. Linares-Pérez, Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses, Sensors, 22 (2022), 8505. https://doi.org/10.3390/s22218505 doi: 10.3390/s22218505
    [18] Q. Liu, Z. Wang, X. He, Stochastic Control and Filtering over Constrained Communication Networks, Springer, Switzerland, 2019. https://doi.org/10.1007/978-3-030-00157-5
    [19] F. Han, H. Dong, Z. Wang, G. Li, F. E. Alsaadi, Improved Tobit Kalman filtering for systems with random parameters via conditional expectation, Signal Process., 147 (2018), 35–45. http://dx.doi.org/10.1016/j.sigpro.2018.01.015 doi: 10.1016/j.sigpro.2018.01.015
    [20] R. Caballero-Águila, A. Hermoso-Caraz, J. oLinares-Pérez, Centralized filtering and smoothing algorithms from outputs with random parameter matrices transmitted through uncertain communication channels, Digit. Signal Process., 85 (2019), 77–85. https://doi.org/10.1016/j.dsp.2018.11.010 doi: 10.1016/j.dsp.2018.11.010
    [21] W. Liu, X. Xie, W. Qian, X. Xu, Y. Shi, Optimal linear filtering for networked control systems with random matrices, correlated noises, and packet dropouts, IEEE Access, 8 (2020), 59987–59997. http://dx.doi.org/10.1109/ACCESS.2020.2983122 doi: 10.1109/ACCESS.2020.2983122
    [22] S. Sun, Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises, IEEE Trans. Signal Process., 68 (2020), 1064–1074. https://doi.org/10.1109/TSP.2020.2967180 doi: 10.1109/TSP.2020.2967180
    [23] R. Caballero-Águila, J. Linares-Pérez, Distributed fusion filtering for uncertain systems with coupled noises, random delays and packet loss prediction compensation, Int. J. Syst. Sci., 54 (2023), 371–390. https://doi.org/10.1080/00207721.2022.2122905 doi: 10.1080/00207721.2022.2122905
    [24] M. S. Mahmoud, M. M. Hamdan, U. A. Baroudi, Modeling and control of Cyber-Physical Systems subject to cyber attacks: A survey of recent advances and challenges, Neurocomputing, 338 (2019), 101–115. https://doi.org/10.1016/j.neucom.2019.01.099 doi: 10.1016/j.neucom.2019.01.099
    [25] Z. Wang, D. Wang, B. Shen, F. E. Alsaadi, Centralized security-guaranteed filtering in multirate-sensor fusion under deception attacks, J. Frankl. Inst., 355 (2018), 406–420. https://doi.org/10.1016/j.jfranklin.2017.11.010 doi: 10.1016/j.jfranklin.2017.11.010
    [26] F. Han, H. Dong, Z. Wang, G. Li, Local design of distributed H$_\infty$-consensus filtering over sensor networks under multiplicative noises and deception attacks, Int. J. Robust Nonlinear Control, 29 (2019), 2296–2314. https://doi.org/10.1002/rnc.4493 doi: 10.1002/rnc.4493
    [27] R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, A two-phase distributed filtering algorithm for networked uncertain systems with fading measurements under deception attacks, Sensors, 20 (2020), 6445. https://doi.org/10.3390/s20226445 doi: 10.3390/s20226445
    [28] S. Xiao, Q. Han, X. Ge, Y. Zhang, Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks, IEEE Trans. Cybern., 50 (2020), 1200–1228. https://doi.org/10.1109/tcyb.2019.2900478 doi: 10.1109/tcyb.2019.2900478
    [29] L. Ma, Z. Wang, Y. Chen, X. Yi, Probability-guaranteed distributed secure estimation for nonlinear systems over sensor networks under deception attacks on innovations, IEEE Trans. Signal Inf. Proc. Netw., 7 (2021), 465–477. https://doi.org/10.1109/TSIPN.2021.3097217 doi: 10.1109/TSIPN.2021.3097217
    [30] Y. Ma, S. Sun, Distributed Optimal and Self-Tuning Filters Based on Compressed Data for Networked Stochastic Uncertain Systems with Deception Attacks, Sensors, 23 (2023), 335. https://doi.org/10.3390/s23010335 doi: 10.3390/s23010335
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1052) PDF downloads(65) Cited by(1)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog