We considered three types of stochastic models of a single population growth: with diffusion-type noise; with parameters replaced by stochastic processes; and with random jumps describing a sudden decrease in population size. We presented methods for studying stochastic processes modeling population growth, in particular, the long-time behavior of sample paths and their distributions. We were especially interested in the asymptotic stability of the density of the distributions of these processes. We gave biological interpretations, examples, and numerical simulations of theoretical methods and results.
Citation: Katarzyna Pichór, Ryszard Rudnicki. Stochastic models of population growth[J]. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
We considered three types of stochastic models of a single population growth: with diffusion-type noise; with parameters replaced by stochastic processes; and with random jumps describing a sudden decrease in population size. We presented methods for studying stochastic processes modeling population growth, in particular, the long-time behavior of sample paths and their distributions. We were especially interested in the asymptotic stability of the density of the distributions of these processes. We gave biological interpretations, examples, and numerical simulations of theoretical methods and results.
[1] |
C. A. Braumann, Growth and extinction of populations in randomly varying environments, Comput. Math. Appl., 56 (2008), 631–644. https://doi.org/10.1016/j.camwa.2008.01.006 doi: 10.1016/j.camwa.2008.01.006
![]() |
[2] | C. A. Braumann, Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance, John Wiley & Sons, Hoboken, NJ, 2019. https://10.1002/9781119166092 |
[3] |
R. Levins, The effect of random variations of different types on population growth, PNAS, 62 (1969), 1062–1065. https://doi.org/10.1073/pnas.62.4.1061 doi: 10.1073/pnas.62.4.1061
![]() |
[4] |
R. M. May, Stability in randomly fluctuating versus deterministic environments, Am. Nat., 107 (1973), 621–650. https://doi.org/10.1086/282863 doi: 10.1086/282863
![]() |
[5] |
M. Liu, K. Wang, X. Liu, Long term behaviors of stochastic single-species growth models in a polluted environment, Appl. Math. Model., 35 (2011), 752–762. https://doi.org/10.1016/j.apm.2010.07.031 doi: 10.1016/j.apm.2010.07.031
![]() |
[6] |
E. Allen, Environmental variability and mean-reverting processes, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2073–2089. https://doi.org/10.3934/dcdsb.2016037 doi: 10.3934/dcdsb.2016037
![]() |
[7] |
L. F. Gordillo, P. E. Greenwood, A stochastic mechanism causing long or short transients near a bifurcation point, Proc. R. Soc. Lond. A, 480 (2024), 20240329. https://doi.org/10.1098/rspa.2024.0329 doi: 10.1098/rspa.2024.0329
![]() |
[8] |
M. Gao, X. Ai, A stochastic Gilpin–Ayala mutualism model driven by mean-reverting OU process with Lévy jumps, Math. Biosci. Eng., 21 (2024), 4117–4141. https://doi:10.3934/mbe.2024182 doi: 10.3934/mbe.2024182
![]() |
[9] |
B. Zhou, D. Jiang, T. Hayat, Analysis of a stochastic population model with mean-reverting Ornstein–Uhlenbeck process and Allee effects, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106450. https://doi.org/10.1016/j.cnsns.2022.106450 doi: 10.1016/j.cnsns.2022.106450
![]() |
[10] |
M. A. U. Karim, V. Aithal, A. R. Bhowmick, Random variation in model parameters: A comprehensive review of stochastic logistic growth equation, Ecol. Model., 484 (2023), 110475. https://doi.org/10.1016/j.ecolmodel.2023.110475 doi: 10.1016/j.ecolmodel.2023.110475
![]() |
[11] | F. B. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation, Society for Industrial and Applied Mathematics, Philadelphia, 2007. https://doi.org/10.1137/1.9780898718638 |
[12] |
F. B. Hanson, H. C. Tuckwell, Population growth with randomly distributed jumps, J. Math. Biol., 36 (1997), 169–187. https://doi.org/10.1007/s002850050096 doi: 10.1007/s002850050096
![]() |
[13] |
S. D. Peckham, E. C. Waymire, P. De Leenheer, Critical thresholds for eventual extinction in randomly disturbed population growth models, J. Math. Biol., 77 (2018), 495–525. https://doi.org/10.1007/s00285-018-1217-y doi: 10.1007/s00285-018-1217-y
![]() |
[14] |
D. Li, J. Cui, G. Song, Permanence and extinction for a single-species system with jump-diffusion, J. Math. Anal. Appl., 430 (2015), 438–464. https://doi.org/10.1016/j.jmaa.2015.04.050 doi: 10.1016/j.jmaa.2015.04.050
![]() |
[15] |
A. Hening, D. H. Nguyen, Coexistence and extinction for stochastic Kolmogorov systems, Ann. Appl. Probab., 28 (2018), 1893–1942. https://doi.org/10.1214/17-AAP1347 doi: 10.1214/17-AAP1347
![]() |
[16] |
A. Hening, D. H. Nguyen, P. Chesson, A general theory of coexistence and extinction for stochastic ecological communities, J. Math. Biol., 82 (2021), 56. https://doi.org/10.1007/s00285-021-01606-1 doi: 10.1007/s00285-021-01606-1
![]() |
[17] |
S. J. Schreiber, M. Benaïm, K. A. S. Atchadé, Persistence in fluctuating environments, J. Math. Biol., 62 (2011), 655–683. https://doi.org/10.1007/s00285-010-0349-5 doi: 10.1007/s00285-010-0349-5
![]() |
[18] | R. Khasminskii, Stochastic Stability of Differential Equations, 2nd edition, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-23280-0 |
[19] |
K. Pichór, R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668–685. https://doi.org/10.1006/jmaa.2000.6968 doi: 10.1006/jmaa.2000.6968
![]() |
[20] |
K. Pichór, R. Rudnicki, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl., 436 (2016), 305–321. https://doi.org/10.1016/j.jmaa.2015.12.009 doi: 10.1016/j.jmaa.2015.12.009
![]() |
[21] | E. Allen, Modeling with Itô Stochastic Differential Equations, Springer, Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-5953-7 |
[22] | L. C. Evans, An Introduction to Stochastic Differential Equations, American Mathematical Society, Providence RI, 2013. |
[23] | J. Norris, Simplified Malliavin calculus, in Lecture Notes in Mathematics, (1986), 101–130. https://doi.org/10.1007/BFb0075716 |
[24] | S. Aida, S. Kusuoka, D. Strook, On the support of Wiener functionals, in Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotic, (eds. K. D. Elworthy and N. Ikeda), Longman Scient. Tech., (1993), 3–34. |
[25] |
G. Ben Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Relat. Fields, 90 (1991), 377–402. https://doi.org/10.1007/BF01192161 doi: 10.1007/BF01192161
![]() |
[26] | D. W. Stroock, S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Univ. Cal. Press, Berkeley, (1972), 333–360. https://api.semanticscholar.org/CorpusID: 35508438 |
[27] | R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in Evolutionary Equations with Applications in Natural Sciences, (eds. J. Banasiak and M. Mokhtar-Kharroubi), Springer, Heidelberg, (2015), 255–318. https://doi.org/10.1007/978-3-319-11322-7_6 |
[28] | R. Rudnicki, M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, Springer, Cham (Switzerland), 2017. https://doi.org/10.1007/978-3-319-61295-9 |
[29] |
K. Pichór, R. Rudnicki, Asymptotic properties of a general model of immune status, SIAM J. Appl. Math., 83 (2023), 172–193. https://doi.org/10.1137/21M1466906 doi: 10.1137/21M1466906
![]() |