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Abstract: We considered three types of stochastic models of a single population growth: with
diffusion-type noise; with parameters replaced by stochastic processes; and with random jumps
describing a sudden decrease in population size. We presented methods for studying stochastic
processes modeling population growth, in particular, the long-time behavior of sample paths and their
distributions. We were especially interested in the asymptotic stability of the density of the distributions
of these processes. We gave biological interpretations, examples, and numerical simulations of
theoretical methods and results.
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1. Introduction

Natural processes are subject to various random perturbations, so we often use stochastic methods
to build their models. In this article we restrict ourselves to single population growth models. We
show how a stochastic perturbation is introduced into a deterministic model. We start with the classic
situation when we add a diffusion-type noise to a population growth equation. Such models are already
quite well studied [1–5], but for the sake of completeness we present their important properties in a
concise way.

The next class of models is obtained by replacing one or more parameters in deterministic models
with stochastic processes [6–10]. This case is a bit more difficult, because we generally get degenerate
diffusion processes. The last class of models considered here are models with disasters [11–14]. The
growth of population is described by a deterministic flow with random jumps.

Our aim is to present some mathematical tools and methods for investigating the models under
consideration, especially long-time behavior of sample paths and distributions of considered stochastic
processes. We study when the distribution of the population size stabilizes or when the population dies
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out (the trajectories converge to zero or the distributions of the process converge weakly to Dirac’s
delta at zero) or has unlimited growth.

The considered processes generate semigroups of operators on L1 space, describing the evolution
of the densities of their distributions. We are particularly interested in the existence of invariant
(stationary) densities and their asymptotic stability. The ergodicity of processes follows from this
property, and thus, using the Monte Carlo method, we can easily determine invariant densities using
computer simulations.

The organization of the paper is as follows. Section 2 is devoted to population growth models
described by one-dimensional stochastic equations of the Itô type. We consider models with
environmental and demographic noise. We recall the properties of such models, in particular the
long-time behavior of the sample paths and distributions of processes. In this section, we also
introduce the concept of partially integral stochastic semigroups and present theorems on their
long-time behavior. In particular, we show when the asymptotic stability follows from the existence
of an invariant density (Theorem 4) and give conditions under which Foguel’s alternative holds
(Theorem 5), i.e., the semigroup is either asymptotically stable or is “sweeping” from compact sets.
We also use these theorems in later sections of the paper.

In Section 3 we study a model obtained from an ordinary differential equation by replacing the per
capita birth rate by a stationary diffusion process. We obtain a degenerate diffusion process (Xt,Yt)
but, using Hörmander’s condition, we show that the transition probability function has a density p
and, using a method based on support theorems, we prove positivity of p on a sufficiently large set.
Then we give conditions when the densities of the process (Xt,Yt) converge to a stationary density.
Such a property is usually proved by checking the tightness of the distributions of the considered
process and showing that the stationary measures on the boundary of the domain are repulsive [15–
17]. These conditions can be proved using an appropriately chosen Lyapunov function (Khasminskii
function) [18]. In our case, the construction of the Lyapunov function is quite difficult, so we use
a different technique. First we show that the stochastic semigroup generated by the process (Xt,Yt)
satisfies the Foguel alternative. Then, using an ergodic theorem, we prove the existence of a compact
set C satisfying the condition P((Xt,Yt) ∈ C) ≥ ε > 0, which guarantees asymptotic stability. We also
present numerical simulations of the theoretical results.

In Section 4 we consider a model of population growth with random disasters. This model is
obtained by adding sudden decreases in its size at random times to a differential equation describing
the growth of the population. The population size distribution satisfies a partial differential equation
with a non-local operator describing the jump process. This equation generates a stochastic semigroup,
which we investigate using the Foguel alternative. We analyze the long-time behavior of the semigroup
in the case where the sudden decrease in population size is proportional to the population size.

2. Models described by the Itô stochastic differential equations

In this section we recall properties of models given by the Itô stochastic differential equations. Such
models are obtained from deterministic models by adding a stochastic perturbation. A deterministic
model of a single population is of the form:

ẋ(t) = b(x(t))x(t) − l(x(t))x(t), (2.1)
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where x(t) is the size of the population at time t, and b(x) and l(x) are the per capita birth and death
rates, respectively. We assume that b and l are C1 nonnegative functions and b − l is a bounded above
function. The function g(x) = (b(x) − l(x))x is called the growth rate. Thus we can write Eq (2.1)
in the form ẋ(t) = g(x(t)). By adding noise to the last equation we obtain the following Itô stochastic
equation:

dXt = g(Xt) dt + σ(Xt) dWt. (2.2)

Here and throughout the paper, Wt denotes the standard Wiener process and σ(x) is the diffusion
coefficient. We usually consider two forms of the function σ(x). If we consider environmental noise,
then σ(x) = σx. In the case of demographic noise we assume that σ(x) = σ

√
x.

In order to study properties of sample paths of the process (Xt) we need the following result being a
consequence of the Feynman–Kac formula.

Theorem 1. We assume that g and σ are C1-functions in the interval [α, β] and σ(x) > 0 for x ∈ [α, β].
Let X0 = x0 ∈ (α, β) and τ be the first exit time from the interval [α, β]. Then P(τ < ∞) = 1 and

P(Xτ = β) =
Φ(x0)
Φ(β)

, Φ(x) =
∫ x

α

exp
(
−

∫ s

γ

2g(r)
σ2(r)

dr
)

ds, (2.3)

where γ is any point from the interval [α, β].

Since the properties of the solutions of Eq (2.2) differ significantly depending on the choice of the
function σ we consider the both cases separately.

2.1. Environmental noise

Now assume that σ(x) = σx, σ > 0. The long-time behavior of sample paths of the process (Xt)
depends on whether the following expressions:

J1(x) =
∫ x

0
exp

(
−

∫ s

1

2g(r)
σ2r2 dr

)
ds, J2(x) =

∫ ∞

x
exp

(
−

∫ s

1

2g(r)
σ2r2 dr

)
ds

are finite. It is worth noting that the expression J1(x) can be infinite in the case when the function under
the integral sign is unbounded at zero (see Example 2). The following results can be obtained from
Theorem 1 by the limit passages with α→ 0 and β→ ∞. Let X0 = x, x ∈ (0,∞). Then
a) if J1(x) = +∞ and J2(x) = +∞, then

P(lim sup
t→∞

Xt = +∞) = P(lim inf
t→∞

Xt = 0) = 1, (2.4)

b) if J1(x) < +∞ and J2(x) < +∞, then

P(lim
t→∞

Xt = +∞) = 1 − P(lim
t→∞

Xt = 0) =
J2(x)

J1(x) + J2(x)
, (2.5)

c) if J1(x) < +∞ and J2(x) = +∞, then

P(lim
t→∞

Xt = 0) = 1, (2.6)

d) if J1(x) = +∞ and J2(x) < +∞, then

P(lim
t→∞

Xt = ∞) = 1. (2.7)
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Example 2. If g(x) = gx, then

J1(x) =
∫ x

0
s−2g/σ2

ds, J2(x) =
∫ ∞

x
s−2g/σ2

ds.

Consequently, J1(x) < ∞ if and only if 2g < σ2 and J2(x) < ∞ if and only if 2g > σ2. Thus, if 2g = σ2,
then a) holds; if 2g < σ2, then c) holds; and if 2g > σ2, then d) holds. These properties also follow
from the formula

Xt = X0e(g−σ2/2)t+σWt . (2.8)

Moreover, from (2.8) it follows that limt→∞ P(Xt ≤ M) = 1 if 2g < σ2; limt→∞ P(Xt ≥ M) = 1 if
2g > σ2; limt→∞ P(Xt ≤ M) = 1/2 and limt→∞ P(Xt ≥ M) = 1/2 if 2g = σ2 for each M > 0.

Theorem 3. We assume additionally that g is a C2-function and g(x)/x ≤ σ2/2 for sufficiently large x.
Let ḡ = g′(0) − σ2/2.

(i) If ḡ < 0, then limt→∞ Xt = 0 a.e.

(ii) If ḡ ≥ 0, then lim inft→∞ Xt = 0 and lim supt→∞ Xt = ∞ a.e.

The abbreviation a.e. stands for “almost everywhere”.

Proof. From the inequality g(x)/x ≤ σ2/2 it follows that J2(x) = +∞. We check when J1(x) is finite.
Since g(0) = 0, from Taylor’s formula it follows that for each r > 0 there is θr ∈ (0, r) such that
2g(r) = 2g′(0)r + g′′(θr)r2. Thus∫ s

1
2g(r)r−2 dr =

∫ s

1
(2g′(0)r−1 + g′′(θr)) dr = 2g′(0) ln s + (s − 1)g′′(zs),

where zs has values in the interval (0,max(1, x)). Since

J1(x) =
∫ x

0
exp

(
−

∫ s

1

2g(r)
σ2r2 dr

)
ds =

∫ x

0
s−2g′(0)/σ2

e(1−s)g′′(zs)/σ2
ds,

J1(x) is finite if and only if ḡ < 0. Thus if ḡ < 0, then the case c) holds, and if ḡ ≥ 0, then the case a)
holds. □

We now examine the problem of the asymptotic behavior of the distribution of the process (Xt). The
variables Xt have densities u(t, x) for t > 0, which satisfy the Fokker–Planck equation:

∂u
∂t

(t, x) = −
∂

∂x
(g(x)u(t, x)) +

σ2

2
∂2

∂x2 (x2u(t, x)). (2.9)

If X0 has the density u0 and u(t, x) is the solution of Eq (2.9), then the formula P(t)u0 = u(t, x) defines
a stochastic semigroup on the space L1[0,∞).

We recall that if (X,Σ,m) is a σ-finite measure space, then a family {P(t)}t≥0 of linear operators
on L1 = L1(X,Σ,m) is called a stochastic semigroup if each operator P(t) is positive (if f ≥ 0 then
P(t) f ≥ 0) and preserves the integral (

∫
X

P(t) f (x) m(dx) =
∫

X
f (x) m(dx) for f ∈ L1), and the function

t 7→ P(t) f is continuous for each f ∈ L1.
The semigroup {P(t)}t≥0 is called asymptotically stable if there exists a density f∗ such that

lim
t→∞
∥P(t) f − f∗∥ = 0 (2.10)
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for each density f . Here ∥ · ∥ is the norm in L1, i.e., ∥ f ∥ =
∫

X
| f (x)|m(dx). We recall that a measurable

function f : X → R is a density if f ≥ 0 and ∥ f ∥ = 1. From (2.10) it follows immediately that f∗ is an
invariant density, i.e., P(t) f∗ = f∗ for each t ≥ 0.

In order to formulate a theorem on asymptotic stability of stochastic semigroups we need to
introduce an auxiliary notion.

A stochastic semigroup {P(t)}t≥0 is called partially integral if there exists a measurable function
k : (0,∞) × X × X → [0,∞], called a kernel, such that

P(t) f (y) ≥
∫

X
k(t, x, y) f (x) m(dx)

for every density f and ∫
X

∫
X

k(t, x, y) m(dy) m(dx) > 0

for some t > 0.

Theorem 4 ( [19]). Let {P(t)}t≥0 be a partially integral stochastic semigroup. Assume that the
semigroup {P(t)}t≥0 has a unique invariant density f∗. If f∗ > 0 a.e., then the semigroup {P(t)}t≥0 is
asymptotically stable.

The second important notion which describes the long-time behavior of stochastic semigroups is
sweeping. A stochastic semigroup {P(t)}t≥0 is called sweeping with respect to a set A ∈ Σ if for every
f ∈ L1 we have

lim
t→∞

∫
A

P(t) f (x) m(dx) = 0. (2.11)

Further we assume that (X, ρ) is a separable metric space and Σ = B(X) is theσ-algebra of Borel subsets
of X. We consider a partially integral semigroup {P(t)}t≥0 which satisfies the following condition:

(K) For every x0 ∈ X there exists an ε > 0, a t > 0, and a measurable function η ≥ 0 such that∫
η(x) m(dx) > 0 and

k(t, x, y) ≥ η(y)1B(x0,ε)(x) for y ∈ X, (2.12)

where B(x0, ε) = {x ∈ X : ρ(x, x0) < ε} and 1A denotes the indicator function of the set A, i.e.,
1A(x) = 1 if x ∈ A and 1A(x) = 0 if x < A.

Theorem 5 ( [20]). If a stochastic semigroup {P(t)}t≥0 satisfies (K) and
∫ ∞

0
P(t) f (x) dt > 0 a.e. for

every density f , then the Foguel alternative holds, i.e., this semigroup is asymptotically stable or
sweeping from compact sets.

The semigroup {P(t)}t≥0 generated by Eq (2.9) is integral and has a positive kernel, which implies
that it has at most one invariant density. If an invariant density f∗ exists then it satisfies the equation

−(g(x) f∗(x))′ +
1
2

(σ2x2 f∗(x))′′ = 0. (2.13)

Hence, we easily determine the invariant density:

f∗(x) =
C
x2 exp

(∫ x

1

2g(s)
σ2s2 ds

)
(2.14)
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as long as C can be chosen such that f∗ is a density, which reduces to proving the integrability of f∗ for
C > 0. The integrability of the function f∗ depends only on its behavior near 0 and +∞. The study of
this integrability can be carried out similarly to the study of the sample paths properties. According to
Theorem 4, we have the following result.

Theorem 6. Let g be a C2-function, lim supx→∞ g(x)/x < σ2/2, and ḡ > 0. Then the semigroup
{P(t)}t≥0 is asymptotically stable.

Example 7 (Logistic model). Now we consider a stochastic version of the logistic model. Let g(x) =
rx(K − x), r > 0, and K > 0. Then lim supx→∞ g(x)/x = −∞ and ḡ = rK − σ2/2. Thus, if 2rK > σ2,
then the semigroup {P(t)}t≥0 is asymptotically stable. Using the formula (2.14) we obtain that f∗ is the
gamma density

f∗(x) =
1

Γ(λ)θλ
xλ−1e−x/θ,

where λ = 2rK
σ2 − 1, and θ = σ

2

2r . Here E X = λθ = K − σ
2

2r .

Example 8 (Gompertz model). In the study of cell populations (e.g., tumours), we often use the
Gompertz model to describe population growth. In such a model, the size of the population satisfies
the equation ẋ = g(x), in which g(x) = rx ln(K/x), r,K > 0. Thus a stochastic version of the Gompertz
model is the following:

dXt = rXt ln(K/Xt) dt + σXt dWt. (2.15)

Note that the function g is not differentiable at x = 0, so we cannot apply the theory presented earlier.
After substituting Zt = ln Xt and using the Itô formula we obtain

dZt = α(Zt) dt + σ dWt,

where
α(y) = g(ey)e−y −

1
2
σ2 = rey ln(Ke−y)e−y −

1
2
σ2 = r ln K − ry −

1
2
σ2.

Then
dZt =

(
r ln K − rZt −

1
2
σ2

)
dt + σ dWt. (2.16)

If Vt = Zt − c and c = ln K − σ2/(2r), then Vt satisfies the Langevin equation

dVt = −rVt dt + σ dWt. (2.17)

One of the solutions of Eq (2.17) is the stationary Ornstein–Uhlenbeck process which has the invariant
density v∗(x) =

√
r/πσ2 exp(−rx2/σ2). Since Xt = exp(Vt + c), the process (Xt) has the log-normal

invariant density
f∗(x) =

√
r/πσ2x−1 exp(−r(ln x − c)2/σ2).

Thus, the semigroup {P(t)}t≥0 is asymptotically stable.

Since for any initial distribution of X0 and any t > 0 the random variables Xt have densities u(t, ·),
we finally obtain

lim
t→∞
∥u(t, ·) − f∗∥ = 0
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for any distribution of X0. Thus we can use the ergodic theorem, which states that if φ : [0,∞) → R is
a measurable function and φ f∗ is an integrable function, then

lim
t→∞

1
t

∫ t

0
φ(Xs(ω)) ds =

∫ ∞

0
φ(x) f∗(x) dx (2.18)

for an a.e. sample path. In particular, for any measurable set A ⊂ [0,∞) the mean sojourn time of
almost all trajectories in the set A is

∫
A

f∗(x) dx.
From Theorem 3 (i) it follows that if ḡ < 0 and g(x)/x ≤ σ2/2 for sufficiently large x, then

limt→∞ Xt = 0 a.e., which means that the population dies out. Also from Theorem 3 (i) we obtain

lim
t→∞

P(Xt ≤ δ) = 1 for all δ > 0. (2.19)

One can check that if ḡ = 0 and g(x)/x ≤ σ2/2 − ε for some ε > 0 and sufficiently large x, then the
condition (2.19) also holds, i.e., the population dies out in the sense of distribution.

Another more realistic definition of extinction can be considered by assuming that a population goes
extinct if the number of individuals falls below a certain critical level xcrit > 0 and then extinction will
occur over a finite period of time. In all cases considered so far, this condition is fulfilled. It follows
from the fact that if g(x)/x ≤ σ2/2 for sufficiently large x, then almost all sample paths of the process
(Xt) visit any neighborhood of zero with a probability of one.

For a population to survive with a positive probability, we need to assume that the function g is
growing at a greater rate than σ2x/2.

Example 9. Consider the model with g(x) = gx and σ(x) = σx. We assume that X0 = x0 > xcrit and
ḡ = g − σ2/2 > 0. Then

P(Xt ≥ xcrit for t ≥ 0) = 1 −
( xcrit

x0

)2ḡ/σ2

.

This result follows from Theorem 1. We omit the detailed proof.

2.2. Demographic noise

In the models we have considered so far, the functions g andσwere sufficiently smooth and satisfied
the condition g(0) = σ(0) = 0. As a result, the diffusion process never hits the point 0. In such a case,
we say that the point 0 belongs to the unattainable boundary for the diffusion process (if the process
hits the boundary with positive probability, then this boundary is called attainable). We check that if
the noise is demographic, i.e., σ(x) = σ

√
x, then 0 is an attainable point.

We start with a particular model:

dXt = gXt dt + σ
√

Xt dWt, X0 = x0 > 0. (2.20)

If g = 0, then the process (Xt) is called the Feller diffusion.
We show that the process (Xt) satisfying (2.20) hits 0 with positive probability. In order to do it

consider Eq (2.20) in the interval [α, β] with 0 < α < x0 < β < ∞. According to formula (2.3), the
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probability that the process (Xt) exits through the right end of the interval [α, β] is Φ(x0)/Φ(β), where

Φ(x) =
∫ x

α

exp
(
−

∫ s

γ

2g(r)
σ2(r)

dr
)

ds =
∫ x

α

exp
(
−

∫ s

γ

2gr
σ2r

dr
)

ds

=

∫ x

α

exp
(2g
σ2 (γ − s)

)
ds

=
σ2

2g

(
exp

(
2g
σ2 (γ − α)

)
− exp

(
2g
σ2 (γ − x)

))
for g , 0, and Φ(x) = x − α for g = 0. Hence

Φ(x0)
Φ(β)

=
e−2gα/σ2

− e−2gx0/σ
2

e−2gα/σ2
− e−2gβ/σ2 for g , 0,

Φ(x0)
Φ(β)

=
x0 − α

β − α
for g = 0.

On passing to the limit β→ +∞ we get the following:

P(Xt ≥ α : for t ≥ 0) =

1 − e2gα/σ2−2gx0/σ
2
, if g > 0,

0, if g ≤ 0.

On passing this time to the limit α→ 0+ we obtain

P(Xt > 0: for t ≥ 0) =

1 − e−2gx0/σ
2
, if g > 0,

0, if g ≤ 0,

so the probability that the process (Xt) hits zero equals e−2gx0/σ
2

when g > 0, while it is 1 when g ≤ 0.

Remark 10. Eq (2.20) has the following interesting property. If (X1
t ) and (X2

t ) are independent
processes defined by this equation satisfying the initial conditions Xi

0 = xi, i = 1, 2, then the process
(Xt) satisfying this equation with initial condition X0 = x1 + x2 has the same distribution as the process
(X1

t + X2
t ). This fact is related to the demographic noise property that the stochastic disturbance of the

entire population is the sum of the independent disturbances of the subpopulations.

We now consider the general model:

dXt = g(Xt) dt + σ
√

Xt dWt, X0 = x0 > 0, (2.21)

where g is a C1-function in the interval [0,∞). It is easy to check that if lim supx→∞ g(x) < σ2/2, then
Φ(∞) = ∞, which implies that the process (Xt) hits zero with a probability of one. If lim infx→∞ g(x) >
σ2/2 and g′(0) > 0, then Φ(∞) < ∞ and the process (Xt) hits zero with a probability less than one.
Precisely, sample paths with positive probability hit zero and with positive probability converge to +∞.

Comparing the properties of models with environmental noise and demographic noise we deduce
that for small populations the demographic noise is more dangerous than the environmental noise. The
opposite is true for large populations, i.e., the demographic noise has less impact on the population.
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3. A model with a stochastic parameter

A new class of stochastic models can be obtained if we replace a parameter in a deterministic model
by a stochastic process. We begin with a simple deterministic model with a constant per capita birth
rate b:

ẋ(t) = bx(t) − l(x(t))x(t), x(0) = x0 > 0. (3.1)

We assume that the external noise changes the birth rate b, and so we replace b by a stationary
Markov process (Yt) which satisfies the Itô equation

dYt = a(Yt)Yt dt + σYt dWt. (3.2)

Since the death rate is a positive number, we assume that the sample paths of this process are positive
functions. In order to keep positive values of sample paths, we assume that a is a C1-function defined
on the interval [0,∞). According to Theorem 6, so that there is a stationary process (Yt) satisfying Eq
(3.2), it is sufficient to assume that a is a C2-function, a(0) > σ2/2, and lim supx→∞ a(x) < σ2/2.

We replace b in Eq (3.1) by the process (Yt). Then the solution x(t) of this equation is also a
stochastic process, denoted by (Xt), and the growth of the population is described now by the following
equation:

dXt/dt = YtXt − l(Xt)Xt, X0 = x0 > 0. (3.3)

We also assume that the process (Yt) has a finite mean value E Y . It is easy to check that if
lim supx→∞ a(x) < 0, then E Y < ∞. We denote by (Ω,F ,P) the probability space on which the
process (Xt,Yt) is defined.

Remark 11. One can consider also models with values of sample paths of (Yt) in some interval (α, β),
but then we need to consider Eq (3.2) with drift and diffusion coefficients having zeroes at α and β, and
fulfilling an appropriate condition guaranteeing the existence of a stationary process.

We precede our study of the long-time behavior of the solutions of Eq (3.1) with a remark on
“medium-time behavior”. Let a function x : [0,T ] → (0,∞) be a sample path of the process (Xt),
i.e., x(t) = Xt(ω) for some ω ∈ Ω. Since the sample paths of the processes (Xt) and (Yt) are positive
functions, according to Eq (3.3), the function x(t) satisfies the following condition:

ẋ(t) + l(x(t))x(t) > 0, x(0) = x0. (3.4)

Of course not all functions satisfying (3.4) are sample paths of (Xt), but we have the following property.
For each ε > 0, T ≥ 0, and x satisfying (3.4) we have

P(|Xt − x(t)| < ε for t ∈ [0,T ]) > 0. (3.5)

This property follows immediately from the fact that if y : [0,T ] → (0,∞) is any continuous function
and δ > 0, then

P(|Yt − y(t)| < δ for t ∈ [0,T ]) > 0.

Thus, we see that any function satisfying condition (3.4) approximately realizes one of the possible
population growth scenarios.
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The solution of problem (3.3) depends on the process (Yt), but can only be expressed by explicit
formulae in a few cases. The simplest case is when l is a constant, say l(x) = ρ. Then

Xt = x0 exp
(∫ t

0
Ys ds − ρt

)
. (3.6)

According to the ergodic theorem limt→∞
1
t

∫ t

0
Ys ds = E Y a.e. Thus, the a.e. sample path of the process

(Xt) approaches exponentially +∞ when E Y > ρ, and 0 when E Y < ρ. In this model the long-time
behavior is practically the same as in the deterministic model with the per capita growth rate E Y − ρ.

Now we consider a logistic model with l(x) = ρ + γx. Then

Xt =
exp

(∫ t

0
Ys ds − ρt

)
x−1

0 +
∫ t

0
γ exp

(∫ s

0
Yr dr − ρs

)
ds
. (3.7)

Unfortunately, the application of the ergodic theorem to the process (Yt) is not sufficient to examine
the properties of the sample paths of the process (Xt). Further investigation requires the use of methods
related to degenerate diffusion. The following theorem allows us to study the properties of distributions
and sample paths of processes (Xt,Yt) for a rather broad class of models including the logistic one. We
use the notation R2

+ = [0,∞)2 and R2,◦
+ = (0,∞)2.

Theorem 12. Let a and l be C∞-functions such that

a(0) > σ2/2, lim sup
x→∞

a(x) < 0, E Y > l(0), lim inf
x→∞

l(x) > E Y.

Then for each t > 0 the distribution of (Xt,Yt) has a density ft and there exists a density f∗ such that
limt→∞ ∥ ft − f∗∥ = 0 in L1(R2,◦

+ ).

We explain the assumptions of Theorem 12. Inequalities a(0) > σ2/2 and lim supx→∞ a(x) < 0
imply that the process (Yt) is stationary and has a finite mean value. Inequalities containing E Y imply
that there exists a compact subset C of R2,◦

+ such that P((Xt,Yt) ∈ C) > ε > 0.
The plan of the proof is the following. First, we prove that the transition probability function

P(t, (x0, y0), A) of the process (Xt,Yt) has a continuous density p(t, (x0, y0), (x, y)) for each t > 0. Next
we check that for arbitrary positive numbers x0, y0, x1, y1 there exists T > 0 such that
p(T, (x0, y0), (x1, y1)) > 0. Then the stochastic semigroup {P(t)}t≥0 on the space L1(R2,◦

+ ) generated by
the process (Xt,Yt) satisfies the assumptions of Theorem 5. Thus the Foguel alternative holds. Since
we find a compact set which does not satisfy sweeping condition (2.11), the semigroup {P(t)}t≥0 is
asymptotically stable.

Lemma 13. The transition probability function P(t, (x0, y0), A) has a density p(t, (x0, y0), (x, y)) and
p ∈ C∞((0,∞) × R2,◦

+ × R
2,◦
+ ).

Proof. First we convert the Itô system (3.2)–(3.3) into the Stratonovitch one [21, 22]:

dXt = (Yt − l(Xt))Xt dt,

dYt = (a(Yt) − 1
2σ

2)Yt dt + σYt ◦ dWt.
(3.8)
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We prove the lemma by checking Hörmander’s condition (cf. [23]). Let σ0(x, y) = ((y − l(x))x, (a(y) −
1
2σ

2)y) and σ1(x, y) = (0, σy). It is enough to check that the vector σ1(x, y) and the Lie bracket
[σ0, σ1](x, y) span the space R2 for each (x, y) ∈ R2,◦

+ . We recall that

[σ0, σ1] j(x, y) = σ01
∂σ1 j

∂x
− σ11

∂σ0 j

∂x
+ σ02

∂σ1 j

∂y
− σ12

∂σ0 j

∂y
.

We have
[σ0, σ1]1(x, y) = −σ12

∂σ01

∂y
= −σy

∂

∂y
(yx − l(x)x) = −σxy,

[σ0, σ1]2(x, y) = σ02
∂σ12

∂y
− σ12

∂σ02

∂y
= −σa′(y)y2,

and hence [σ0, σ1](x, y) = −σ(xy, a′(y)y2). It is clear that vectors σ1(x, y) and [σ0, σ1](x, y) are linearly
independent for each (x, y) ∈ R2,◦

+ . □

There is one important difference between a non-degenerate diffusion and a degenerate diffusion
which satisfies Hörmander’s condition, namely, the kernel p is strictly positive if diffusion is non-
degenerate, but in the degenerate case the kernel p can vanish on some subsets. We check where the
kernel p is positive using a method based on support theorems ( [24–26]):

Theorem 14. Fix a point (x0, y0) ∈ R2,◦
+ and assume that we can find a function ϕ ∈ L2([0,T ];R) such

that there exists a solution of the system

xϕ(t) = x0 +

∫ t

0
σ01(xϕ(s), yϕ(s)) ds,

yϕ(t) = y0 +

∫ t

0

(
σ02(xϕ(s), yϕ(s)) + σ12(xϕ(s), yϕ(s))ϕ(s)

)
ds.

(3.9)

If (x, y) = (xϕ(T ), yϕ(T )) and the Frechét derivative of the function Ψ(h) = (xϕ+h(T ), yϕ+h(T )) in h0 ≡ 0
has the rank 2, then p(T, (x0, y0), (x, y)) > 0.

It is worth noting that this is a strong version of the support theorem for a degenerate diffusion.
The topological support of the measure P(T, (x0, y0), ·) coincides with the closure of the set of all
points (x, y) which can be connected to (x0, y0) at time T by means of solving system (3.9) with an
appropriately chosen function ϕ.

Lemma 15. For any quadruple (x0, y0, x1, y1) of positive numbers there exists T > 0 such that
p(T, (x0, y0), (x1, y1)) > 0.

Proof. Fix positive numbers x0, x1, y0, y1. We show that there exist T > 0 and a continuous function
ϕ : [0,T ]→ R such that the system

ẋ(t) = (y(t) − l(x(t)))x(t), (3.10)
ẏ(t) = (a(y(t)) − 1

2σ
2)y(t) + σy(t)ϕ(t) (3.11)

has a solution satisfying the following boundary conditions:

x(0) = x0, y(0) = y0, x(T ) = x1, y(T ) = y1. (3.12)
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Observe that it is sufficient to find T > 0, a positive function x ∈ C1[0,T ] satisfying the inequality

ẋ(t) + l(x(t))x(t) > 0 for t ∈ [0,T ], (3.13)

the boundary conditions x(0) = x0, x(T ) = x1 and the consistency conditions ẋ(0) = (y0 − l(x0))x0,
ẋ(T ) = (y1− l(x1))x1. Given a function y, we find the function ϕ by solving Eq (3.11). Let F : (0,∞)→
R be a function given by

F(x) =
∫ x

x0

dr
rl(r)
.

Let z(t) = F(x(t)). We can write inequality (3.13) as ż(t) > −1 for t ∈ [0,T ]. We have x(0) = x0 ⇔

z(0) = 0, x(T ) = x1 ⇔ z(T ) = F(x1) and the consistency conditions can be written as

ż(0) =
y0

l(x0)
− 1, ż(T ) =

y1

l(x1)
− 1.

Since ż(0) > −1 and ż(T ) > −1, it is not difficult to find T > 0 and a C1-function z : [0,T ] → R
which fulfils all the required conditions. Since F is a smooth strictly increasing function we can define
x : [0,T ]→ R as x(t) = F−1(z(t)) for t ∈ [0,T ].

The Frechét derivative of the function Ψ can be found by means of the perturbation method for
ordinary differential equations. Let x = (x, y), xϕ = (xϕ, yϕ),

Λ(t) =
dσ0

dx
(xϕ(t)) +

dσ1

dx
(xϕ(t))ϕ(t), (3.14)

and let Q(t, t0), for T ≥ t ≥ t0 ≥ 0, be a matrix function such that Q(t0, t0) = I and
∂Q(t, t0)
∂t

=

Λ(t)Q(t, t0). Then

Ψ′(h) =
∫ T

0
Q(T, s)σ1(xϕ(s))h(s) ds. (3.15)

Let ε ∈ (0,T ) and hε = 1[T−ε,T ]. Since Q(T, s) = I + Λ(T )(T − s) + o(T − s), from (3.15) we obtain

Ψ′(hε) = εσ1(xϕ(T )) + 1
2ε

2Λ(T )σ1(xϕ(T )) + o(ε2). (3.16)

We have xϕ(T ) = x. Let v1 = σ1(xϕ(T )) and v2 = Λ(T )σ1(xϕ(T )). Then

v1 =

[
0
σy

]
, v2 = σx

[
x

(a(y)y − σ2y/2)′ + σϕ(T )

]
.

Since the vectors v1 and v2 are linearly independent, the vectors Ψ′(hε) and Ψ′(h2ε) are also linearly
independent. Thus the derivative Ψ′ has rank 2 and finally p(T, (x0, y0), (x, y)) > 0. □

Let Ȳt = Yt − E Y and Zt = ln Xt. Then

dZt/dt = Ȳt − c(Zt), (3.17)

where c(z) = l(ez) − E Y . From our assumptions it follows that there exist δ > 0 and z̄ > 0 such that
c(z) > δ for z ≥ z̄ and c(z) < −δ for z ≤ −z̄.
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Lemma 16. Assume that the random variable Z0 has values in the interval [−z̄, z̄]. Then there exist
T0 > 0, and M > z̄ such that P(ω ∈ Ω : |Zt(ω)| ≤ M) ≥ 1/2 for t ≥ T0.

Proof. The process (Ȳ−t) is also stationary and E Ȳ = 0. From the ergodic theorem applying to the
process (Ȳ−s), s ≥ 0, it follows that

lim
T→∞

1
T

∫ 0

−T
Ȳs(ω) ds = 0 P -a.e.

Since a.e. convergence implies convergence in probability, there exists T0 > 0 such that

P(ω ∈ Ω :

∣∣∣∣∣∣ 1
T

∫ 0

−T
Ȳs(ω) ds

∣∣∣∣∣∣ < δ for T ≥ T0) ≥ 3/4.

Now let t ≥ T0. Then from the last formula it follows that

P(ω ∈ Ω :

∣∣∣∣∣∣ 1
T

∫ t

t−T
Ȳs(ω) ds

∣∣∣∣∣∣ < δ for T ∈ [T0, t]) ≥ 3/4. (3.18)

Since the process (Ȳt) is stationary and its sample paths are continuous functions, there exists a constant
K > δ independent of t such that

P(ω ∈ Ω : max
s∈[t−T0,t]

|Ȳs(ω)| < K) ≥ 3/4. (3.19)

LetΩ0 be a subset ofΩ containing all elementary events ω satisfying both conditions (3.18) and (3.19).
Then P(Ω0) ≥ 1/2. Define M = z̄ + (K − δ)T0. We check that |Zt(ω)| < M for ω ∈ Ω0. Let ω ∈ Ω0 and
τ(ω) ≤ t be such that Zτ(ω) ∈ [−z̄, z̄] and Zs < [−z̄, z̄] for s ∈ (τ(ω), t]. Without loss of generality we can
assume that τ(ω) < t. If Zτ(ω) = z̄, then

Zt(ω) = z̄ +
∫ t

τ(ω)

(
Ȳs(ω) − c(Zs(ω))

)
ds.

Let I1 =
∫ t

τ(ω)
Ȳs(ω) ds. Then from (3.18) and (3.19) we obtain

I1 ≤

K(t − τ(ω)) if τ(ω) ∈ (t − T0, t],
δ(t − τ(ω)) if τ(ω) ∈ [0, t − T0].

Since c(Zs(ω)) ≥ δ for s ∈ [τ(ω), t], we have
∫ t

τ(ω)
c(Zs(ω)) ds ≥ δ(t−τ(ω)). Thus Zt(ω) ≤ z̄+(K−δ)T0 =

M for ω ∈ Ω0. If Zτ(ω) = −z̄, then we analogously obtain that Zt(ω) ≥ −M for ω ∈ Ω0. □

Proof of Theorem 12. First we check that the stochastic semigroup {P(t)}t≥0 on the space L1(R2,◦
+ )

generated by the process (Xt,Yt) satisfies the assumptions of Theorem 5. The semigroup {P(t)}t≥0 is
given by the formula

P(t) f (x, y) =
∫ ∞

0

∫ ∞

0
p(t, (x0, y0), (x, y)) f (x0, y0) dx0 dy0. (3.20)
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According to Lemma 15 for any quadruple (x0, y0, x, y) of positive numbers there exists t > 0 such that
p(t, (x0, y0), (x, y)) > 0. This and the continuity of p imply condition (K). Also Lemma 15 and formula
(3.20) imply that

∫ ∞
0

P(t) f (x, y) dt > 0 for every density f and for all (x, y) ∈ R2,◦
+ . Thus the Foguel

alternative holds.
Let f1(x) be a density supported on the interval [e−z̄, ez̄]. If f1 is the density of the distribution

of X0, then according to Lemma 16 we have P
(
Xt ∈

[
e−M, eM])

≥ 1/2 for t ≥ T0. Let f∗(y) be the
invariant density for the process (Yt). Then there exist positive numbers y1 and y2 > y1 such that
P
(
y1 ≤ Yt ≤ y2

)
≥ 3/4 for each t ≥ 0. Let f (x, y) = f1(x) f∗(y) and C =

[
e−M, eM]

×
[
y1, y2

]
. Then"

C

P(t) f (x, y) dx dy ≥ 1/4 for t ≥ T0.

Thus the semigroup {P(t)}t≥0 is not sweeping from C and, consequently, the semigroup {P(t)}t≥0 is
asymptotically stable. □

We now present the density plots of the joint stationary density of the process (Xt,Yt) and the
marginal densities of the distributions of the processes (Xt) and (Yt) when l(x) = c + x, a(y) = 5 − y,
and σ = 1. Since the process (Yt) is a stationary solution of the logistic model with g(y) = y(5 − y) it
has the invariant density f (y) = 29

Γ(9)y
8e−2y and E Y = 4.5 (see Figure 1).

Figure 1. The plot of the invariant density of (Yt).

The plots of the joint stationary distribution of the process (Xt,Yt) and the marginal density of (Xt)
are given in Figure 2 for c = 1 and in Figure 3 for c = 4. Observe that since ln Xt − ln X0 = Yt − (c+ Xt)
we have E Y = c + E X and consequently E X = 3.5 in the case of c = 1 and EXt = 0.5 in the case of
c = 4.

The graphs in Figures 2 and 3 were prepared using MATLAB. Each plot was obtained from 1000
simulations of sample paths up to time T = 100 with the time step size ∆t = 0.001.

4. Population growth with random disasters

We now assume that a population grows according to the equation

ẋ(t) = g(x(t)), (4.1)

but from time to time, the population encounters a catastrophe that causes its size to drop from x to y,
where y is distributed according to a transition probability function P(x, A) (see Figure 4). We assume
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Figure 2. The plots of the joint stationary density of the process (Xt,Yt) and the marginal
density of (Xt) for c = 1.

Figure 3. The plots of the joint stationary density of the process (Xt,Yt) and the marginal
density of (Xt) for c = 4.

that the measure P(x, ·) has a density p(x, y), i.e., p ≥ 0,
∫ x

0
p(x, y) dy = 1, and P(x, A) =

∫
A

p(x, y) dy.
It is also assumed that the moments of disasters are distributed according to a Poisson process (Nt)t≥0

with rate Λ > 0.

t1 t2 t3 t

Xt

Figure 4. An example of a sample path of the process (Xt).

We assume that g is a C1-function, g(0) = 0, and g(x) > 0 for x ∈ (0, α), where α ∈ (0,∞]. If
α < ∞, then we assume that g(α) = 0. We also assume that

∫ α
ε

dx
g(x) = ∞ for ε > 0, which guarantees

the existence of the solutions of Eq (4.1) for all t > 0. We assume that p(x, y) is a continuous function
for 0 < y < x < α.

The growth of the population is described by a piecewise deterministic Markov process (Xt), t ≥ 0,
with random jumps at the moments of disasters. Assume that the distribution of random variable X0
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has a density f . Then for all t > 0 the distribution of Xt has also a density u(t, ·) and u satisfies the
following equation:

∂u
∂t

(t, x) +
∂

∂x
(g(x)u(t, x)) = ΛQu(t, ·)(x) − Λu(t, x), (4.2)

where Q is a stochastic operator on the space L1 := L1(0, α) given by Q f (y) =
∫ α

0
p(x, y) f (x) dx.

Equation (4.2) can be written as an evolution equation u̇(t) = Au(t) in the space L1, where A =
A0 + ΛQ − ΛI, the operatorA0 is given by

A0 f (x) = −
d
dx

(g(x) f (x)),

and the domain of both operators A and A0 is the set { f ∈ L1 : A0 f ∈ L1}. We denote by πtx0

the solution x(t) of Eq (4.1) with the initial condition x(0) = x0 ≥ 0. The operator A0 generates a
stochastic semigroup {P0(t)}t≥0 on the space L1 given by the formula

P0(t) f (x) = f (π−tx)
∂(π−tx)
∂x

=
f (π−tx)g(π−tx)

g(x)
.

From the Dyson–Phillips expansion the operator A also generates a stochastic semigroup {P(t)}t≥0 on
the space L1 given by the formula

P(t) f = e−Λt
∞∑

n=0

ΛnPn(t) f , (4.3)

where

Pn+1(t) f =
∫ t

0
Pn(t − τ)QP0(τ) f dτ, n ≥ 0. (4.4)

It is easy to check that P1(t) is an integral stochastic operator with a continuous kernel for t > 0,
which implies that the semigroup {P(t)}t≥0 satisfies condition (K). Moreover, the semigroup {P(t)}t≥0

satisfies condition
∫ ∞

0
P(t) f (x) dt > 0 for all x ∈ (0, α) and each density f . The proof of this result is a

little bit technical and we omit it here, but it is a consequence of the fact that the process (Xt) joins an
arbitrary two points from the interval (0, α). According to Theorem 5 we have:

Corollary 17. The semigroup {P(t)}t≥0 is asymptotically stable or sweeping from compact subsets of
the interval (0, α).

Under the assumptions made so far, the following cases are possible:

(a) the semigroup is asymptotically stable,
(b) the semigroup is sweeping to zero, i.e., the distributions of the process (Xt) are weakly converging

to δ0 (population extinction),
(c) the semigroup is sweeping to α, i.e., the distributions of the process (Xt) are weakly convergent

to δα when α < ∞ or limt→∞ P(Xt ≥ M) = 1 for all M > 0 when α = ∞,
(d) the distribution of the process (Xt) is in part swept to zero and in part swept to α.

One method of investigating which of these cases occurs is to examine the stationary solutions of
Eq (4.2). Observe that a stationary solution f satisfies the equation

A0 f + ΛQ f − Λ f = 0.

Mathematical Biosciences and Engineering Volume 22, Issue 1, 1–22.



17

This equation can be written in the form

Λ(ΛI −A0)−1Q f = f .

Then Λ(ΛI −A0)−1 is also a stochastic operator given by the formula

Λ(ΛI −A0)−1 f (x) =
Λ

g(x)

∫ x

0
f (s) exp

(
Λ

∫ s

x

dr
g(r)

)
ds.

Thus f is a solution of the following integral equation:

f (x) =
∫ α

0
K(y, x) f (y) dy, (4.5)

where

K(y, x) =
Λ

g(x)

∫ x

0
p(y, s) exp

(
Λ

∫ s

x

dr
g(r)

)
ds.

If a density f∗ is a solution of Eq (4.5), then the semigroup {P(t)}t≥0 is asymptotically stable. If Eq (4.5)
has a positive but not integrable solution f∗, then one can prove that if f is integrable in a neighborhood
of zero, then condition (c) holds, and if f is integrable in a neighborhood of α, then condition (b) holds.

Another method of checking which condition holds is to use the Khasminskii function (also known
as the Lyapunov function) (see e.g., [28, page 128] for a general result). The process (Xt) has the
infinitesimal generator

LV(x) = g(x)V ′(x) + ΛQ∗V(x) − ΛV(x), (4.6)

where Q∗V(x) =
∫ x

0
p(x, y)V(y) dy. Assume that there exist a C1-function V : [0, α)→ [0,∞), constants

ε,M > 0, and a compact set C ⊂ (0, α) such that

LV(x) ≤ M for x ∈ (0, α) and LV(x) ≤ −ε for x < C. (4.7)

Then the semigroup {P(t)}t≥0 is not sweeping from the set C and, consequently, this semigroup is
asymptotically stable. Using this criterion, we prove the following theorem.

Theorem 18. Assume that α = ∞ and that if x is the size of the population before the disaster, then the
population size after the disaster is xη, where the random variable η has values in the interval [0, 1]
and has a density q : [0, 1]→ [0,∞). Assume that the limit g′(∞) = limx→∞ g(x)/x exists. If

g′(0) + Λ
∫ 1

0
q(r) ln r dr > 0 and g′(∞) + Λ

∫ 1

0
q(r) ln r dr < 0, (4.8)

then the semigroup {P(t)}t≥0 is asymptotically stable.

Proof. We have p(x, y) = 1
xq

(
y
x

)
for 0 ≤ y ≤ x and p(x, y) = 0 otherwise. Let V : (0,∞) → (0,∞) be a

C1-function such that V(x) = x−β for x sufficiently close to zero, and V(x) = xγ for sufficiently large x,
where β and γ are positive numbers. Then

LV(x) = −βg(x)x−β−1 + Λ

∫ x

0

1
x

q
(y

x

)
y−β dy − Λx−β

= x−β
(
−βg′(0) + Λ

∫ 1

0
(r−β − 1)q(r) dr + o(1)

)
Mathematical Biosciences and Engineering Volume 22, Issue 1, 1–22.



18

for x sufficiently close to zero and

LV(x) = γg(x)xγ−1 + Λ

∫ x

0

1
x

q
(y

x

)
yγ dy − Λxγ

= xγ
(
γg′(∞) + Λ

∫ 1

0
(rγ − 1)q(r) dr + o(1)

)
for sufficiently large x. Since

lim
β→0

(r−β − 1)/β = − ln r and lim
γ→0

(rγ − 1)/γ = ln r,

we find β and γ sufficiently close to zero and ε > 0 such that LV(x) ≤ −ε outside some compact set
C ⊂ (0,∞). This implies that the semigroup {P(t)}t≥0 is asymptotically stable. □

Example 19. Assume that q(x) = (α+ 1)xα1[0,1](x) and α ≥ 0. Then
∫ 1

0
q(r) ln r dr = −(1+α)−1. From

(4.8) it follows that if
(1 + α)g′(∞) < Λ < (1 + α)g′(0),

then the semigroup {P(t)}t≥0 is asymptotically stable, which means that the distribution of the
population size tends toward an invariant distribution.

Remark 20. One can check that if

g′(0) + Λ
∫ 1

0
q(r) ln r dr < 0 and g′(∞) + Λ

∫ 1

0
q(r) ln r dr < 0

the population goes extinct and if

g′(0) + Λ
∫ 1

0
q(r) ln r dr > 0 and g′(∞) + Λ

∫ 1

0
q(r) ln r dr > 0

the size of the population grows to∞.

In the next theorem, we examine more closely the long-time behavior of the population size
distribution when g(x) = cx and one of the conditions in Remark 20 is satisfied.

Theorem 21. Let g(x) = cx, c > 0, and p(x, y) = 1
xq

(
y
x

)
1[0,x](y) for a density q : [0, 1] → [0,∞).

Assume that m =
∫ 1

0
q(x) ln x dx < ∞ andσ2 =

∫ 1

0
q(x) ln2 x dx < ∞. If Ft is the cumulative distribution

function (CDF) of Xt, then

lim
t→∞

Ft

(
exp

(
σ
√
Λtx + (c + Λm)t

))
= Φ(x), (4.9)

whereΦ is the CDF of the standard normal distributionN(0, 1) and the convergence in (4.9) is uniform
in x.

Proof. First observe that the operator Q and the semigroup {P0(t)}t≥0 commute, i.e., QP0(t) = P0(t)Q
for all t ≥ 0. Indeed, since P0(t) f (x) = e−ct f (e−ctx) and Q f (x) =

∫ ∞
x

y−1q(x/y) f (y) dy, we have

P0(t)Q f (x) = e−ctQ f (e−ctx) = e−ct
∫ ∞

e−ct x
y−1q(e−ctx/y) f (y) dy
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= e−ct
∫ ∞

x
z−1q(x/z) f (e−ctz) dz = QP0(t) f (x).

We check by induction that the operators Pn(t) and Q also commute and that

Pn(t) =
tn

n!
P0(t)Qn

for all n ≥ 0 and t ≥ 0. From (4.3) we obtain

P(t) f = P0(t)
∞∑

n=0

e−Λt (Λt)n

n!
Qn f . (4.10)

Let ξ0, η1, η2, . . . be a sequence of independent random variables such that ξ0 has the density f and
each random variable ηi has the density q. Then the random variable ξn = ξ0η1 · · · ηn has the density
Qn f . Let (Nt)t≥0 be the Poisson process independent from random variables ξ0, η1, η2, . . . and with rate
Λ. Then the random variable Xt = ectξNt has the density P(t) f . Let Yn = ln ηn for n ≥ 1 and Zt = ln Xt.
Then

Zt = ct + ln ξ0 +
Nt∑
i=1

Yi

and (Zt − ct)t≥0 is a compound Poisson process. We have m = E Yn and σ2 = Var Yn + m2. Then from
the central limit theorem for the compound Poisson process

lim
t→∞

P
(
Zt − ct − Λtm

σ
√
Λt

≤ x
)
= Φ(x) (4.11)

uniformly in x. Since Zt = ln Xt, from (4.11) we obtain (4.9). □

Thus the long-time behavior of
∫ x

0
P(t) f (y) dy is the same as the CDF of the log-normal distribution

LN((c + Λm)t, σ2Λt). From (4.9) it follows that for each M > 0 we have limt→∞ P(Xt ≥ M) = 1 when
c + Λm > 0, and limt→∞ P(Xt ≤ M) = 1 when c + Λm < 0, i.e., the population dies out in the sense of
distribution.

Example 22. If q(x) = (α + 1)xα1[0,1](x), α ≥ 0, then m = −(1 + α)−1. Consequently, if Λ > c(1 + α),
then the population dies out in the sense of distribution and ifΛ < c(1+α) the population has unlimited
growth.

5. Discussion and conclusions

In the present paper we have investigated three types of stochastic models of a single population
growth. Models with diffusion-type environmental and demographic noise are studied in Section 2. We
study long-time behavior of sample paths and densities of distribution and give conditions under which
the population will survive and when it will become extinct. Comparing the properties of models with
environmental noise and demographic noise we deduce that for small populations the demographic
noise is more dangerous than the environmental noise. The opposite is true for large populations,
i.e., the demographic noise has less impact on the population. In the case of demographic noise, the
population dies out with positive probability for each growth function.
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We also investigate when the process describing population size has an asymptotically stable
invariant density using simple and convenient tools related to partially integral semigroups of
stochastic operators (see Theorems 4 and 5). These methods can also be applied to more advanced
models, for example those considered in Sections 3 and 4.

In Section 3 we studied the model obtained from the deterministic one by replacing the birth rate
with a mean-reverting stochastic process [6]. We gave sufficient conditions for the existence and
asymptotic stability of invariant density. The proof of the main result of Theorem 12 is quite advanced
and required the development of new tools that differ from the usual methods for proving asymptotic
stability based on the construction of Lyapunov functions. We also ran computer simulations that
show how the density of the process changes depending on the value of the death rate at zero.

A model of population growth with random disasters was considered in Section 4. The results
obtained make it possible to decide when the population size stabilizes, dies out, or has unlimited
growth. It should be noted that we can consider more general models of population growth with
random disasters. For example Eq (4.1) can be replaced by a stochastic equation (2.2) and the
transition probability function P(x, A) can be arbitrary. Then (Xt) is still a Markov process and it can
be studied by means of the methods already presented [27, 28]. More advanced models are those in
which the moments of disasters are not distributed according to a Poisson process. For example we
can consider a model in which the time between successive disasters is an arbitrary random variable
whose distribution depends on the size of the population after the previous disaster. Since (Xt) is now
no longer a Markov process, the study of its asymptotic properties requires the use of slightly different
methods [29].
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25. G. Ben Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale
(II), Probab. Theory Relat. Fields, 90 (1991), 377–402. https://doi.org/10.1007/BF01192161

26. D. W. Stroock, S. R. S. Varadhan, On the support of diffusion processes with
applications to the strong maximum principle, Univ. Cal. Press, Berkeley, (1972), 333–360.
https://api.semanticscholar.org/CorpusID:35508438

27. R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in
Evolutionary Equations with Applications in Natural Sciences, (eds. J. Banasiak and M. Mokhtar-
Kharroubi), Springer, Heidelberg, (2015), 255–318. https://doi.org/10.1007/978-3-319-11322-
7 6

28. R. Rudnicki, M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models,
Springer, Cham (Switzerland), 2017. https://doi.org/10.1007/978-3-319-61295-9
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