The mean and noise of stochastic gene transcription with cell division

  • Received: 31 January 2018 Revised: 16 April 2018 Published: 01 October 2018
  • MSC : Primary: 37H10; Secondary: 34F05, 60J10, 92C40

  • Life growth and development are driven by continuous cell divisions. Cell division is a stochastic and complex process. In this paper, we study the impact of cell division on the mean and noise of mRNA numbers by using a two-state stochastic model of transcription. Our results show that the steady-state mRNA noise with symmetric cell division is less than that with binomial inheritance with probability 0.5, but the steady-state mean transcript level with symmetric division is always equal to that with binomial inheritance with probability 0.5. Cell division except random additive inheritance always decreases mean transcript level and increases transcription noise. Inversely, random additive inheritance always increases mean transcript level and decreases transcription noise. We also show that the steady-state mean transcript level (the steady-state mRNA noise) with symmetric cell division or binomial inheritance increases (decreases) with the average cell cycle duration. But the steady-state mean transcript level (the steady-state mRNA noise) with random additive inheritance decreases (increases) with the average cell cycle duration. Our results are confirmed by Gillespie stochastic simulation using plausible parameters.

    Citation: Qi Wang, Lifang Huang, Kunwen Wen, Jianshe Yu. The mean and noise of stochastic gene transcription with cell division[J]. Mathematical Biosciences and Engineering, 2018, 15(5): 1255-1270. doi: 10.3934/mbe.2018058

    Related Papers:

  • Life growth and development are driven by continuous cell divisions. Cell division is a stochastic and complex process. In this paper, we study the impact of cell division on the mean and noise of mRNA numbers by using a two-state stochastic model of transcription. Our results show that the steady-state mRNA noise with symmetric cell division is less than that with binomial inheritance with probability 0.5, but the steady-state mean transcript level with symmetric division is always equal to that with binomial inheritance with probability 0.5. Cell division except random additive inheritance always decreases mean transcript level and increases transcription noise. Inversely, random additive inheritance always increases mean transcript level and decreases transcription noise. We also show that the steady-state mean transcript level (the steady-state mRNA noise) with symmetric cell division or binomial inheritance increases (decreases) with the average cell cycle duration. But the steady-state mean transcript level (the steady-state mRNA noise) with random additive inheritance decreases (increases) with the average cell cycle duration. Our results are confirmed by Gillespie stochastic simulation using plausible parameters.


    加载中
    [1] [ D. Antunes,A. Singh, Quantifying gene expression variability arising from randomness in cell division times, J. Math. Biol., 71 (2015): 437-463.
    [2] [ A. Arkin,J. Ross,H. H. Mcadams, Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells, Genetics, 149 (1998): 1633-1648.
    [3] [ P. Bastiaens, Systems biology: When it is time to die, Nature, 459 (2009): 334-335.
    [4] [ C. Bertoli,J. M. Skotheim,R. A. de Bruin, Control of cell cycle transcription during G1 and S phases, Nat. Rev. Mol. Cell Bio., 14 (2013): 518-528.
    [5] [ W. J. Blake,M. Kærn,C. R. Cantor,J. J. Collins, Noise in eukaryotic gene expression, Nature, 422 (2003): 633-637.
    [6] [ P. Bokes,J. R. King,A. T. A. Wood,M. Loose, Exact and approximate distributions of protein and mRNA in the low-copy regime of gene expression, J. Math. Biol., 64 (2012): 829-854.
    [7] [ A. Brock,H. Chang,S. Huang, Non-genetic heterogeneity-a mutation-independent driving force for the somatic evolution of tumours, Nat. Rev. Genet., 10 (2009): 336-342.
    [8] [ H. H. Chang, et al., Transcriptome-wide noise controls lineage choice in mammalian progenitor cells, Nature, 453 (2008), 544–547.
    [9] [ E. Clayton, et al., A single type of progenitor cell maintains normal epidermis, Nature, 446 (2007), 185–189.
    [10] [ A. Colman-Lerner, et al., Regulated cell-to-cell variation in a cell-fate decision system, Nature, 437 (2005), 699–706.
    [11] [ M. R. Dowling, et al., Stretched cell cycle model for proliferating lymphocytes, Proc. Natl. Acad. Sci. USA, 111 (2014), 6377–6382.
    [12] [ M. B. Elowitz,A. J. Levine,E. D. Siggia,P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002): 1183-1186.
    [13] [ P. L. Felmer,A. Quaas,M. X. Tang,J. S. Yu, Random dynamics of gene transcription activation in single cells, J. Differ. Equations, 247 (2009): 1796-1816.
    [14] [ D. Fraser,M. Kærn, A chance at survival: Gene expression noise and phenotypic diversification strategies, Mol. Microbiol., 71 (2009): 1333-1340.
    [15] [ I. Golding,J. Paulsson,S. M. Zawilski,E. C. Cox, Real-time kinetics of gene activity in individual bacteria, Cell, 123 (2005): 1025-1036.
    [16] [ D. Gonze, Modeling the effect of cell division on genetic oscillators, J. Theor. Biol., 325 (2013): 22-33.
    [17] [ E. D. Hawkins,J. F. Markham,L. P. Mcguinness,P. D. Hodgkin, A single-cell pedigree analysis of alternative stochastic lymphocyte fates, Proc. Natl. Acad. Sci. USA, 106 (2009): 13457-13462.
    [18] [ E. D. Hawkins, et al., A model of immune regulation as a consequence of randomized lymphocyte division and death times, Proc. Natl. Acad. Sci. USA, 104 (2007), 5032–5037.
    [19] [ L. F. Huang, et al., The free-energy cost of interaction between DNA loops, Sci Rep-UK, 7 (2017).
    [20] [ D. Huh,J. Paulsson, Non-genetic heterogeneity from random partitioning at cell division, Nat. Genet., 43 (2011): 95-100.
    [21] [ D. Huh,J. Paulsson, Random partitioning of molecules at cell division, Proc. Natl. Acad. Sci. USA, 108 (2011): 15004-15009.
    [22] [ J. Jaruszewicz,M. Kimmel,T. Lipniacki, Stability of bacterial toggle switches is enhanced by cell-cycle lengthening by several orders of magnitude, Phys. Rev. E., 89 (2014): 022710.
    [23] [ F. Jiao,M. X. Tang,J. S. Yu, Distribution profiles and their dynamic transition in stochastic gene transcription, J. Differ. Equations, 254 (2013): 3307-3328.
    [24] [ F. Jiao,M. X. Tang,J. S. Yu,B. Zheng, Distribution modes and their corresponding parameter regions in stochastic gene transcription, SIAM J. Appl. Math., 75 (2015): 2396-2420.
    [25] [ I. G. Johnston and N. S. Jones, Closed-form stochastic solutions for non-equilibrium dynamics and inheritance of cellular components over many cell divisions, Proc. R. Soc. A, 471 (2015), 20150050, 19pp.
    [26] [ M. Kærn,T. C. Elston,W. J. Blake,J. J. Collins, Stochasticity in gene expression: From theories to phenotypes, Nat. Rev. Genet., 6 (2005): 451-464.
    [27] [ S. J. Kron,C. A. Styles,G. R. Fink, Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae, Mol. Biol. Cell, 5 (1994): 933-1063.
    [28] [ J. H. Kuang,M. X. Tang,J. S. Yu, The mean and noise of protein numbers in stochastic gene expression, J. Math. Biol., 67 (2013): 261-291.
    [29] [ E. Kussell,R. Kishony,N. Q. Balaban,S. Leibler, Bacterial persistence: A model of survival in changing environments, Genetics, 169 (2005): 1807-1814.
    [30] [ K. Lewis, Persister cells, Annu. Rev. Microbiol., 64 (2010): 357-372.
    [31] [ Q. Y. Li,L. F. Huang,J. S. Yu, Modulation of first-passage time for bursty gene expression via random signals, Math. Biosci. Eng., 14 (2017): 1261-1277.
    [32] [ Y. Y. Li,M. X. Tang,J. S. Yu, Transcription dynamics of inducible genes modulated by negative regulations, Math. Med. Biol., 32 (2015): 115-136.
    [33] [ E. Libby,T. J. Perkins,P. S. Swain, Noisy information processing through transcriptional regulation, Proc. Natl. Acad. Sci. USA, 104 (2007): 7151-7156.
    [34] [ J. Lloyd-Price,H. Tran,A. S. Ribeiro, Dynamics of small genetic circuits subject to stochastic partitioning in cell division, J. Theor. Biol., 356 (2014): 11-19.
    [35] [ R. Losick,C. Desplan, Stochasticity and cell fate, Science, 320 (2008): 65-68.
    [36] [ A. A. Martinez,J. M. Brickman, Gene expression heterogeneities in embryonic stem cell populations: Origin and function, Curr. Opin. Cell Biol., 23 (2011): 650-656.
    [37] [ B. Munsky,G. Neuert,O. A. Van, Using gene expression noise to understand gene regulation, Science, 336 (2012): 183-187.
    [38] [ M. Osella,E. Nugent,L. M. Cosentino, Concerted control of Escherichia coli cell division, Proc. Natl. Acad. Sci. USA, 111 (2014): 3431-3435.
    [39] [ J. Peccoud,B. Ycart, Markovian modeling of gene-product synthesis, Theor. Popul. Biol., 48 (1995): 222-234.
    [40] [ A Raj,O. A. Van, Nature, nurture, or chance: Stochastic gene expression and its consequences, Cell, 135 (2008): 216-226.
    [41] [ A. Sanchez,S. Choubey,J. Kondev, Regulation of noise in gene expression, Annu. Rev. Biophys., 42 (2013): 469-491.
    [42] [ A. Singh,L. S. Weinberger, Stochastic gene expression as a molecular switch for viral latency, Curr. Opin. Microbiol., 12 (2009): 460-466.
    [43] [ S. O. Skinner, et al., Single-cell analysis of transcription kinetics across the cell cycle, eLife, 5 (2016), e12175.
    [44] [ L. H. So, et al., General properties of transcriptional time series in Escherichia coli, Nat. Genet., 43 (2011), 554–560.
    [45] [ S. L. Spencer, et al., Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis, Nature, 459 (2009), 428–432.
    [46] [ Q. W. Sun,M. X. Tang,J. S. Yu, Modulation of gene transcription noise by competing transcription factors, J. Math. Biol., 64 (2012): 469-494.
    [47] [ Q. W. Sun,M. X. Tang,J. S. Yu, Temporal profile of gene transcription noise modulated by cross-talking signal transduction pathways, B. Math. Biol., 74 (2012): 375-398.
    [48] [ P. S. Swain,M. B. Elowitz,E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity in gene expression, Proc. Natl. Acad. Sci. USA, 99 (2002): 12795-12800.
    [49] [ M. X. Tang, The mean and noise of stochastic gene transcription, J. Theor. Biol., 253 (2008): 271-280.
    [50] [ M. L. Turner,E. D. Hawkins,P. D. Hodgkin, Quantitative regulation of B cell division destiny by signal strength, J. Immunol., 181 (2008): 374-382.
    [51] [ Y. Voichek,R. Bar-Ziv,N. Barkai, Expression homeostasis during DNA replication, Science, 351 (2016): 1087-1090.
    [52] [ H. H. Wang,Z. J. Yuan,P. J. Liu,T. S. Zhou, Division time-based amplifiers for stochastic gene expression, Mol. Biosyst., 11 (2015): 2417-2428.
    [53] [ L. S. Weinberger, et al., Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity, Cell, 122 (2005), 169–182.
    [54] [ J. S. Yu,X. J. Liu, Monotonic dynamics of mRNA degradation by two pathways, J. Appl. Anal. Comput., 7 (2017): 1598-1612.
    [55] [ J. S. Yu,Q. W. Sun,M. X. Tang, The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription, J. Theor. Biol., 363 (2014): 223-234.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3620) PDF downloads(880) Cited by(5)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog