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Abstract. Life growth and development are driven by continuous cell divi-
sions. Cell division is a stochastic and complex process. In this paper, we

study the impact of cell division on the mean and noise of mRNA numbers by

using a two-state stochastic model of transcription. Our results show that the
steady-state mRNA noise with symmetric cell division is less than that with bi-

nomial inheritance with probability 0.5, but the steady-state mean transcript

level with symmetric division is always equal to that with binomial inheri-
tance with probability 0.5. Cell division except random additive inheritance

always decreases mean transcript level and increases transcription noise. In-

versely, random additive inheritance always increases mean transcript level
and decreases transcription noise. We also show that the steady-state mean

transcript level (the steady-state mRNA noise) with symmetric cell division or
binomial inheritance increases (decreases) with the average cell cycle duration.

But the steady-state mean transcript level (the steady-state mRNA noise) with

random additive inheritance decreases (increases) with the average cell cycle
duration. Our results are confirmed by Gillespie stochastic simulation using

plausible parameters.

1. Introduction. Transcription is one of the most fundamental cell biology pro-
cesses. Gene transcription regulation is also one of the central topics in modern
molecular biology. With the advent of MS2 tagging and single molecule RNA
fluorescence in situ hybridisation technologies, detecting mRNA production in a
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single cell has come true. The measurement results reveal that mRNA copy num-
ber presented in an individual cell is low and mRNA level can vary significantly
across cells in isogenic or clonal populations exposed to the same environment
[5, 10, 12, 13, 15, 26, 32, 40]. This variability may affect many important processes in
cellular biology, such as response to apoptosis-inducing factors [3, 45], bet-hedging in
bacterial phenotypes [14, 29], information processing [33], cellular decision-making
[2, 35, 42, 53], stem-cell fate decisions [8, 9, 10, 35, 36], the effectiveness of clinical
treatment [30], and even cancer development [7]. Thus, understanding the origins
of gene expression variabilities and establishing theoretical model to describe these
variabilities have become very important in cell biology.

There is a large body of literature devoted to mean transcript level and tran-
scription noise [5, 6, 12, 13, 14, 19, 28, 31, 32, 33, 46, 47, 48, 49, 54, 55]. The models
include Poisson expression statistics, two-state model of gene regulation [5, 37, 41],
multi-state model of gene regulation [49], and so on. Additionally, reaction rates
can also fluctuate because of stochastic variation in the global pool of housekeeping
genes or because of fluctuations in environmental conditions that affect all genes
[5, 10, 12, 15]. For example, substrates, enzymes and regulatory molecules can also
fluctuate and further randomize expression rates. All these lead to considerable
intercellular variation in the mRNA levels in genetically identical cell populations.

Cell division is an integral part of life activity by which a single-celled fertilized
egg develops into a mature organism, as well as the process by which blood cells,
hair, skin, and some internal organs are renewed. Life growth and development
are driven by the continuous cell divisions. It is a stochastic and complex process.
The volume-based division and the time-based division are two common methods
to describe cell division. For the former, when the volume of a cell is growing twice
the original volume, the cell begins to divide [16, 34, 38]. But the time-based di-
vision is different from the volume-based cell division. A cell might divide before
its volume reaching double the original volume or not divide although its volume
reaches double the original volume. The time at which the cell divides is determin-
istic or random depending on cellular environments or cellular physiological states
[17, 18, 38, 50]. Cell division modes contain both symmetric and asymmetric ones,
where asymmetric cell division contains binomial inheritance, random subtractive
inheritance and random additive inheritance, etc. Symmetric cell division yields
two daughter cells with equal cellular components. However, asymmetric cell divi-
sion is different. Biological experiments have provided evidence for division times,
but the mechanism how symmetric and asymmetric cell division, as well as cell
cycle affect gene expression has not been fully elucidated. The cell cycle between
adjacent divide times has global effects on mRNA synthesis. Recent experiments
have suggested that it is also an important source of transcription noise [4, 11, 51].
At the end of cell cycle, stochastic partitioning of mRNA molecules can also create
further fluctuations at cell division, it is also a vital source of transcription noise.
For example, in Drosophila melanogaster, asymmetric cell division plays an impor-
tant role in neural development. Elucidating the stochastic kinetics of cell division
is crucial to comprehensively understanding gene expression.

Although there has been much work focused on cell divisions [4, 11, 16, 17, 18,
24, 34, 38, 43, 50, 51, 52], there is little work of quantitative analysis exploring the
effects of symmetric and asymmetric cell divisions as well as cell cycle on mean
transcript level and transcription noise. In this paper, we consider the time-based
division and merge cell division as well as a variety of inheritance regimes into a
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two-state model of gene transcription. We derive the dynamic mean transcript level
and transcription noise with cell divisions. The analytical solutions agree exactly
with stochastic simulations. The mathematical formalism we explored provides an
effective method to get explicit moment formula for mRNA number and provides
an insight into gene expression.

2. Model description. We construct the following theoretical model to describe
the random transcription with cell division (Figure 1). The model is built on the
most prevailing stochastic model for gene transcription, the so-called two-state
model commonly used in the literature [15, 23, 26, 44]. It has been postulated
that the durations in the gene active (G) and inactive (G′) states are independent
exponentially distributed, and mRNA copy numbers are controlled by a random
birth and death process. Each copy of the gene switches stochastically with rates
kon and koff between active and inactive states in a cell cycle. In the active state,
transcription is initiated stochastically with rate µon. Mature mRNA is degraded
stochastically with rate δ (Figure 1. A). The model includes two additional fea-
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Figure 1. Modeling of two-state stochastic model of transcription
with cell division. A. Kinetic scheme for describing two-state tran-
scription model, where G and G′ denote the gene is active and in-
active, respectively. B. A simplified diagram intuitively illustrates
the cell cycle. The ith cell cycle is from Wi−1 to Wi, the duration
of the ith cell cycle is Ti. The cell division events are indicated by
arrows.

tures: the cell cycle and the partitioning of mRNA molecules effects. Since we are
concerned with the effects of cell division on mean transcript level and transcrip-
tion noise, we don’t distinguish several phases in the cell cycle but merge them into
one stage (Figure 1. B). It should be pointed out that this simplification does not
influence the qualitative conclusions reached in this paper. The ith cell cycle is
from Wi−1 to Wi, Ti = Wi −Wi−1 is the ith cell cycle duration, where W0 = 0.
T1,T2,T3, · · · are assumed to be the independent and identically distributed ran-
dom variables and the division is a transient process, the duration for division is not
counted. Cell goes from the ith cell cycle into the (i + 1)th cell cycle. At the end
of the cell cycle, each mRNA molecule has the same probability to be segregated
to one daughter cell which is regarded as the mother cell in the next cell division
(for convenience, we call it the aim daughter cell), or a number of mRNA molecules
are lost or gained at each cell division, and this number is itself a random vari-
able. We focus on exploring the analytic expressions of mean transcript level and
transcription noise.
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3. Analytical results.

3.1. The mean and noise within a cell cycle. In this subsection, we derive
the analytical expressions of the dynamic mean transcript level and the dynamic
transcription noise corresponding to the reaction network (Figure 1. A) within a
cell cycle. Let M(t) be the copy number of the mRNA molecules at time t. Suppose
that the initial copy number of the mRNA molecules is m0 and the gene in a single
cell is inactive initially. Let

P (m, t) = Pr{M(t) = m}

quantify the probability that there are m mRNA molecules at time t. The mean
transcript level m(t) and the second moment µ(t) are defined as

m(t) =
∞∑
m=0

mP (m, t), µ(t) =

∞∑
m=0

m2P (m, t).

The stochastic fluctuations of transcription in cell populations have been char-
acterized by noise η2(t), the variance normalized by the square of m(t) and noise
strength, and the ratio between the variance and the mean [5, 12, 28, 46, 47]

η2(t) =
µ(t)−m2(t)

m2(t)
.

Clearly, the noise is completely determined by the mean m(t) and the second mo-
ment µ(t).

For the convenience of the reader, we add Appendix A to give proofs of the next
(1) and (2).

m(t) = m0h(t) + g(t), (1)

and

µ(t) = m2
0h

2(t) +m0r(t) + s(t), (2)

where

h(t) =e−δt,

g(t) =
µonkon

(kon + koff )(kon + koff − δ)
e−(kon+koff )t − µonkon

δ(kon + koff − δ)
e−δt

+
µonkon

δ(kon + koff )
,

r(t) =

(
2µonkon

δ(kon + koff )
+ 1

)(
e−δt − e−2δt

)
− 2µonkon

(kon + koff )(δ − kon − koff )

(
e−(kon+koff+δ)t − e−2δt

)
,

s(t) =− µonkon(2δ2 + (2µon − kon − koff )δ − 2µonkoff )

δ(kon + koff )(kon + koff − δ)(kon + koff − 2δ)

(
e−(kon+koff )t − e−2δt

)
− µonkon(δ(kon + koff ) + 2µonkon)

δ2(kon + koff )(kon + koff − δ)
(
e−δt − e−2δt

)
+

µonkon
δ(kon + koff )

(
1 +

δµon + µonkon
δ(kon + koff + δ)

)(
1− e−2δt

)
− 2µ2

onkonkoff
δ(kon + koff )((kon + koff )2 − δ2)

(
e−(kon+koff+δ)t − e−2δt

)
.
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(1) and (2) are the basis for the dynamic mean transcript level and the noise
with cell divisions.

3.2. The mean and noise with cell divisions. In this section, we detail the
approach by which we obtain the first two moments of M(t) with any number of cell
cycles and stochastic partitioning mRNA molecules at cell divisions. For consistency

reasons, we stipulate
∑i
j=k aj = 0 and

∏i
j=k aj = 1 for i < k throughout this paper.

64748
14444444444444444444244444444444444444443

6447448

0
W

64748

1
W

2
W

3
W

+1
W

i
W

i

64474486447448
L1

t
2

t
3

t
i

t
1i

t
+

1

1

i

j i

j

t tt
=

= å +
+

1
W

i-

Figure 2. Schematic diagrams for the time evolution with cell
division. The cell division events are indicated by green arrows.
Wi stands for the ith cell division point, τi is the value of Ti, ti+1

is the elapsed time since the ith (the recent) cell division, then

t =
∑i
j=1 τj + ti+1.

Now, we consider the stochastic model of transcription with a series of cell di-
visions. The ith cell cycle is from Wi−1 to Wi, Ti = Wi −Wi−1 is the ith cell
cycle duration, where W0 = 0. The most common distributions to model the cell
cycle Ti are exponential distribution, Erlang distribution [1], log-normal distribu-
tion [18], uniform distribution, etc. Let τi be the value of the ith cell cycle Ti,
after which a division occurs. A variable ti+1 measures the elapsed time since the
ith cell division (Figure 2), then ti+1 ∈ [0, τi+1). Time is accounted for throughout
this hybrid model in the following manner. If the ith (the recent) cell division has

occurred, the total elapsed time can be written as
∑i
j=1 τj + ti+1. Hence for any

t ≥ 0 there exists an (i+ 1)-dimension vector (τ1, τ2, · · · , τi, ti+1) such that

t =

i∑
j=1

τj + ti+1,

where i stands for the number of the cell division before the time t, and ti+1 measures
the elapsed time since the ith (the recent) cell division.

In order to obtain mean mRNA level m(t) and transcription noise η2(t) in each
cell cycle stage, we need the following definitions and notations.

• m−i : the copy number of mRNA molecules just before the ith cell division;
• m+

i : the copy number of mRNA molecules right after the ith cell division;
• Pκ(m+

i |m
−
i ): the probability that there are m+

i mRNA molecules in the
daughter cell after the ith cell division, given m−i mRNA molecules in the
mother cell before the ith cell division;

• Pj(m, ti+1|m+
i−j): the probability that there are m mRNA molecules at time t

after the ith cell division, given m+
i−j mRNA molecules right after the (i−j)th

cell division;
• Φj = Pκ

(
m+
j |m

−
j

)
P0

(
m−j , τj |m

+
j−1

)
;

• θj(m−i ) =
∑m−i
m+

i =0
(m+

i )jPκ(m+
i |m

−
i );

• ϑj(m−i ) =
∑∞
m+

i =m−i
(m+

i )jPκ(m+
i |m

−
i );



1260 QI WANG, LIFANG HUANG, KUNWEN WEN AND JIANSHE YU

•
∑′

i,j =
∑∞
m−i =0

∑m−i
m+

i =0

∑∞
m−i−1=0

∑m−i−1

m+
i−1=0

· · ·
∑∞
m−j =0

∑m−j

m+
j =0

;

•
∑′′

i,j =
∑∞
m−i =0

∑∞
m+

i =m−i

∑∞
m−i−1=0

∑∞
m+

i−1=m−i−1
· · ·
∑∞
m−j =0

∑∞
m+

j =m−j
;

• Ai =
∑′

i,1m0(τi+1|m+
i )
∏i
j=1 Φj , A0 = m0(τ1);

• Ci =
∑′′

i,1m0(τi+1|m+
i )
∏i
j=1 Φj , C0 = m0(τ1);

• Bi =
∑′

i,1 µ0(τi+1|m+
i )
∏i
j=1 Φj , B0 = µ0(τ1);

• Di =
∑′′

i,1 µ0(τi+1|m+
i )
∏i
j=1 Φj , D0 = µ0(τ1).

Define

mj(ti+1|m+
i−j) =

∞∑
m=0

mPj(m, ti+1|m+
i−j), i = 0, 1, 2, · · · , j = 0, 1, 2, · · · , i

and

µj(ti+1|m+
i−j) =

∞∑
m=0

m2Pj(m, ti+1|m+
i−j), i = 0, 1, 2, · · · , j = 0, 1, 2, · · · , i.

The aim in the following is to obtain the expressions of mi(ti+1|m0) and µi(ti+1|m0).
For symmetric division and binomial inheritance, based on the total probability
formula, Pi(m, ti+1|m0) can be decomposed into the following form [25]

Pi(m, ti+1|m0) =

∞∑
m−i =0

m−i∑
m+

i =0

Pi−1(m−i , τi|m
+
0 )Pκ(m+

i |m
−
i )P0(m, ti+1|m+

i ). (3)

By induction, one can get

Pi(m, ti+1|m0) =

′∑
i,1

P0(m, ti+1|m+
i )

i∏
j=1

Φj

 . (4)

From (1) and (2), we have by noting m+
0 = m−0 = m0

m0(t1|m0) = m(t1) = m0h(t1) + g(t1) (5)

and

µ0(t1|m0) = µ(t1) = m2
0h

2(t1) +m0r(t1) + s(t1), (6)

respectively. Taking advantage of (4)-(6), we obtain

mi(ti+1|m0) =

′∑
i,1

m0(ti+1|m+
i )

i∏
j=1

Φj

=h(ti+1)

′∑
i−1,1

∞∑
m−i =0

θ1(m−i )P0(m−i , τi|m
+
i−1)

i−1∏
j=1

Φj

+ g(ti+1)

′∑
i−1,1

∞∑
m−i =0

θ0(m−i )P0(m−i , τi|m
+
i−1)

i−1∏
j=1

Φj

(7)

and

µi(ti+1|m0) =

′∑
i,1

µ0(ti+1|m+
i )

i∏
j=1

Φj
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=h2(ti+1)

′∑
i−1,1

∞∑
m−i =0

θ2(m−i )P0(m−i , τi|m
+
i−1)

i−1∏
j=1

Φj

+ r(ti+1)

′∑
i−1,1

∞∑
m−i =0

θ1(m−i )P0(m−i , τi|m
+
i−1)

i−1∏
j=1

Φj

+ s(ti+1)

′∑
i−1,1

∞∑
m−i =0

θ0(m−i )P0(m−i , τi|m
+
i−1)

i−1∏
j=1

Φj .

(8)

3.3. The mean and noise with some specific divisions. In this subsection,
we will derive the specific expressions of (7) and (8) for some specific cell divisions.
Usually, there are two distinct types of cell divisions, i.e., symmetric division and
asymmetric division, where asymmetric cell division includes binomial inheritance,
random subtractive inheritance and random additive inheritance, etc.

A. B.

C.

p

D.

Binomial inheritanceSymmetric cell division

Random subtractive inheritance Random additive inheritance

Figure 3. Schematic diagram for cell division modes, where the
arrow points to the aim daughter cell. A. Symmetric cell division.
B. Binomial inheritance. C. Random subtractive inheritance. D.
Random additive inheritance.

3.3.1. Symmetric cell division. For symmetric cell division, the mRNA molecules
in mother cell are equally divided into two daughter cells [20, 21, 22, 27]. Note that
m+
i is a nature number, Pκ(m+

i |m
−
i ) can be expressed as

Pκ(m+
i |m

−
i ) = 1{m−i /2}

(m+
i ) + 1{(m−i ±1)/2}(m

+
i ),

where 1Ω is the indicator function of Ω.
For convenience, let m+

i take real numbers, we obtain

mi(ti+1|m0) =
1

2
h(ti+1)Ai−1 + g(ti+1)

and

µi(ti+1|m0) =
h2(ti+1)

4
Bi−1 +

r(ti+1)

2
Ai−1 + s(ti+1),

where

Ai−1 = 2m0

i∏
j=1

(
h(τj)

2

)
+

i∑
k=1

g(τk)

i∏
j=k+1

(
h(τj)

2

)
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and

Bi−1 = 4m2
0

i∏
j=1

(
h(τj)

2

)2

+

i∑
k=1

 i∏
j=k+1

(
h(τj)

2

)2(
r(τk)

2
Ak−2 + s(τk)

) .

3.3.2. Binomial inheritance. For binomial inheritance, every mRNA molecule in
mother cell can be assigned into the daughter cell with the equal probability pi.
The number of mRNA molecules assigned into the daughter cell obeys binomial
distribution. Hence

Pκ(m+
i |m

−
i ) =

(
m−i
m+
i

)
p
m+

i
i (1− pi)m

−
i −m

+
i , i = 0, 1, 2, · · · ,

where pi ∈ (0, 1). In this case, we obtain

mi(ti+1|m0) = pih(ti+1)Ai−1 + g(ti+1)

and

µi(ti+1|m0) =p2
ih

2(ti+1)Bi−1 +
(
(pi − p2

i )h
2(ti+1) + pir(ti+1)

)
Ai−1

+ s(ti+1),

where

Ai−1 =
m0

pi

i∏
j=1

(pjh(τj)) +

i∑
k=1

pkg(τk)

pi

i∏
j=k+1

pjh(τj)


and

Bi−1 =
m2

0

p2
i

i∏
j=1

(pjh(τj))
2

+

i∑
k=1

((pk−1 − p2
k−1)h2(τk) + pk−1r(τk)

)
Ak−2

i∏
j=k+1

(pjh(τj))
2


+

i∑
k=1

s(τk)

i∏
j=k+1

(pjh(τj))
2

 ,

where p0 ≡ 0.

3.3.3. Random subtractive inheritance. We now consider the case where a number
of mRNA molecules are lost at each cell division. This number is a random variable
and obeys binomial distribution with population size 2ηi and probability 0.5, then
the average loss number is ηi. Hence

Pκ(m+
i |m

−
i ) =

(
2ηi

m−i −m
+
i

)
2−2ηi .

In this case, we obtain

mi(ti+1|m0) = h(ti+1)Ai−1 + g(ti+1)− ηih(ti+1)

and

µi(ti+1|m0) =h2(ti+1)Bi−1 +
(
r(ti+1)− 2ηih

2(ti+1)
)
Ai−1

+ h2(ti+1)
(
η2
i +

ηi
2

)
− ηir(ti+1) + s(ti+1),
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where

Ai−1 = m0

i∏
j=1

h(τj) +

i∑
k=1

(g(τk)− ηk−1h(τk))

i∏
j=k+1

h(τj)


and

Bi−1 =m2
0

i∏
j=1

h2(τj) +

i∑
k=1

(r(τk)− 2ηk−1h
2(τk)

)
Ak−2

i∏
j=k+1

(h(τj))
2


+

i∑
k=1

(h2(τk)
(
η2
k−1 +

ηk−1

2

)) i∏
j=k+1

(h(τj))
2


+

i∑
k=1

(−ηk−1r(τk) + s(τk))

i∏
j=k+1

(h(τj))
2

 .

3.3.4. Random additive inheritance. We now consider the case where a number of
mRNA molecules are gained at the ith cell division. This number is a random
variable and obeys binomial distribution with population size 2ζi and probability
0.5, then the average loss number is ζi. Hence

Pκ(m+
i |m

−
i ) =

(
2ζi

m+
i −m

−
i

)
2−2ζi .

We firstly decompose Pi(m, ti+1|m0) into the following form

Pi(m, ti+1|m0) =

∞∑
m−i =0

∞∑
m+

i =m−i

Pi−1(m−i , τi|m
+
0 )Pκ(m+

i |m
−
i )P0(m, ti+1|m+

i ).

It follows by induction that

Pi(m, ti+1|m0) =

′′∑
i,1

P0(m, ti+1|m+
i )

i∏
j=1

Φj

 .

Similarly to the random subtractive inheritance, we obtain

mi(ti+1|m0) = h(τi+1)Ci−1 + g(τi+1) + ζih(τi+1)

and

µi(ti+1|m0) =h2(ti+1)Di−1 +
(
r(ti+1) + 2ζih

2(ti+1)
)
Ci−1

+ h2(ti+1)

(
ζ2
i +

ζi
2

)
+ ζir(ti+1) + s(ti+1),

where

Ci−1 = m0

i∏
j=1

h(τj) +

i∑
k=1

(g(τk) + ζk−1h(τk))

i∏
j=k+1

h(τj)


and

Di−1 =m2
0

i∏
j=1

h2(τj) +

i∑
k=1

(r(τk) + 2ζk−1h
2(τk)

)
Ck−2

i∏
j=k+1

(h(τj))
2
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+

i∑
k=1

h2(τk)

(
ζ2
k−1 +

ζk−1

2

) i∏
j=k+1

(h(τj))
2



+

i∑
k=1

(ζk−1r(τk) + s(τk))

i∏
j=k+1

(h(τj))
2

 .

4. Numerical results. In this section, we will present our numerical results. For
a given cell cycle distribution (exponential distribution, Erlang distribution [1], log-
normal distribution [18], uniform distribution, etc.), we first randomly generate
a series of division cycles τ1, τ2, · · · , τi whose mean is denoted by τ (representing
the mean cell-cycle length). mi(ti+1|m0) and µi(ti+1|m0) denote respectively the
mean and noise of mRNA numbers with the generating fixed cell division cycles
τ1, τ2, · · · , τi. By averaging the different mi(ti+1|m0) and µi(ti+1|m0) corresponding
to the different series of division cycles τ1, τ2, · · · , τi, we obtain the time-evolutional
analytic mean and noise of mRNA number, respectively. Similarly, with a series of
division cycles τ1, τ2, · · · , τi, by using the Gillespie stochastic simulation algorithm,
we generate 10000 run at every time point and calculate the stochastic trajectory.
By averaging these trajectory data, we obtain the time-evolutional numerical mean
mRNA number.

For the narrative convenience, we introduce the following abbreviations:

• S: symmetric cell division;
• BF: binomial inheritance with fixed probability p = 0.5;
• BR: binomial inheritance with random probability p ∈ [0.4, 0.6];
• RA: random additive inheritance;
• AS: random additive and subtractive inheritance;
• RS: random subtractive inheritance.

For S, m+
i =

m−i
2 if m−i is even, otherwise m+

i takes randomly between
m−i −1

2

and
m−i +1

2 . For BF, m+
i obeys the binomial distribution with parameters m−i and

p = 0.5. For BR, each mRNA molecule is assigned to the daughter cell with the
probability p at the end of a given cell cycle, but p may be different at the ends
of the different cell cycles, which can be randomly selected from the interval [0.4,
0.6]. For AS, m+

i takes randomly between m−i + n and m−i − n where n obeys the
binomial distribution with parameters m−i and p = 0.5. For constant cycle, we take
the average in a few cycles as the steady-state mRNA mean or steady-state mRNA
noise, otherwise we average the values in the time interval [200, 800] as the steady-
state mRNA mean or steady-state mRNA noise. The parameters kon = koff = 1,
µon = 10, δ = 0.0529 [52]. The initial mRNA molecule number m0 = 4. By (1) and
(2) we know the steady-state mRNA mean and the steady-state mRNA noise with
no cell division are m = 94.5180 and η = 0.0363, respectively.

The analytic solutions agree exactly with Gillespie stochastic simulation using
plausible parameters kon = koff = 1, µon = 10, δ = 0.0529 [52]. Figure 4 shows
the analytic solutions and the numerical solutions of mean transcript level with BR
and AS, where the cell cycle obeys log-normal distribution with the mean τ = 120.

Table 1 shows the steady-state mean transcript level (the steady-state mRNA
noise) with S, BF, BR and different cell cycle distributions, where the mean of cell
cycle is τ = 120.
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Figure 4. Temporal changes in the mean transcript level. The
red solid lines represent analytic solutions and the blue dashed
lines with circles sign represent numerical solutions. A. Temporal
changes in the mean transcript level with BR. B. Temporal changes
in the mean transcript level with AS.

S BF BR
Constant cell cycle 86.4910 (0.0402) 86.4910 (0.0408) 86.4924 (0.0408)
Exponential distribution 87.2826 (0.0395) 87.2826 (0.0401) 87.2840 (0.0401)
Log-normal distribution 86.7222 (0.0402) 86.7222 (0.0407) 86.7257 (0.0408)
Erlang distribution 86.8273 (0.0400) 86.8273 (0.0406) 86.8276 (0.0407)
Uniform distribution 86.7222 (0.0402) 86.7222 (0.0407) 86.7257 (0.0408)

Table 1. The steady-state mean transcript level (the steady-state
mRNA noise) with S, BF, BR, and different cell cycle distributions,
where the mean of the cell cycle is τ = 120.

Table 2 shows the steady-state mean transcript level (the steady-state mRNA
noise) with BA, BS, AS and different cell cycle distributions, where the mean of
cell cycle is τ = 120.

RA AS RS
Constant cell cycle 96.0226 (0.0353) 94.1360 (0.0367) 92.2314 (0.0381)
Exponential distribution 95.9311 (0.0356) 94.1327 (0.0367) 92.3301 (0.0379)
Log-normal distribution 95.7876 (0.0354) 94.1105 (0.0367) 92.4612 (0.0379)
Erlang distribution 95.9445 (0.0354) 94.1248 (0.0367) 92.3034 (0.0380)
Uniform distribution 95.9698 (0.0353) 94.1229 (0.0367) 92.2841 (0.0381)

Table 2. The steady-state mean transcript level (the steady-state
mRNA noise) with RA, AS, RS and different cell cycle distribu-
tions, where the mean of the cell cycle is τ = 120.

From Table 1 and Table 2 we can see that the steady-state mRNA noise with S
is less than that with BF, and the steady-state mean transcript levels with the two
modes are same. The steady-state mean transcript levels (the steady-state mRNA
noises) with BF and BR are almost same. The steady-state mean transcript levels
with S, BF and BR fall by about 7.65%-8.5% compared with no cell division. The
steady-state mean transcript level with RA rises by about 1.5%-1.9%. The steady-
state mean transcript levels with AS and RS fall by 0.4%-0.43% and 2.18%-2.42%
respectively, compared with no cell division. All division modes except RA raise
the steady-state mRNA noises.

In the case of the same cell cycle distribution, Figure 5 show that the steady-state
mRNA noise with S is less than that with BF, but the steady-state mean transcript
level with S is always equal to that with BF; The steady-state mean transcript
levels (the steady-state mRNA noises) with BF and BR are almost same; The
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Figure 5. Influence of mean cell-cycle length τ on the steady-state
mean transcript level and steady-state mRNA noise, where the cell
cycle obeys log-normal distribution. The black stars, yellow stars,
magenta stars, blue stars, red stars and green stars represent the
steady-state mean transcript level (the steady-state mRNA noise)
with S, BF, BR, RA, AS and RS, respectively, where the dashed
lines represent the fittings. A. Influence of mean cell-cycle length
τ on the steady-state mean transcript level. B. Influence of mean
cell-cycle length τ on the steady-state mRNA noise.

steady-state mean transcript levels (the steady-state mRNA noises) with S, BF and
BR increase (decrease) with the average cell cycle duration, while the steady-state
mean transcript level (the steady-state mRNA noise) with RA decreases (increases)
with the average cell cycle duration; The steady-state mean transcript level is almost
constant although the steady-state mRNA noise with AS decreases with the average
cell cycle duration; The steady-state mean transcript level with RS increases with
the average cell cycle duration although the steady-state mRNA noise with RS is
almost constant. By fitting we obtain the relationship between the steady-state
mean transcript level (the steady-state mRNA noise) and the cell cycle duration is
very close to the power function with the form f(x) = axb + c. From the fitting we
can predict the steady-state mean transcript level (the steady-state mRNA noise)
in different cycles.

5. Conclusion and discussion. Gene transcription is a complex stochastic pro-
cess, which result in high variability in gene expression. The sources of transcription
noise come about in two ways, intrinsic source and extrinsic source. Intrinsic noise
results from the inherent stochasticity of biochemical processes. The extrinsic noise
originates from the cellular environmental perturbations or from extracellular sig-
nals regulating intracellular processes. Although there is a large body of literature
devoted to mean transcript level and transcription noise [5, 6, 12, 13, 14, 19, 28, 31,
32, 33, 46, 47, 48, 49, 54, 55] even cell divisions [4, 11, 16, 17, 18, 24, 34, 38, 43, 50,
51, 52], there is little work of quantitative analysis exploring the effects of symmet-
ric and asymmetric cell divisions as well as cell cycle on mean transcript level and
transcription noise. Here, we have constructed a theoretical model to describe the
random transcription with cell division. We merge several phases in a cell cycle into
one stage and derive the analytical formulas for mean transcript level and mRNA
noise corresponding to our model. By analysis, we have shown that symmetric cell
division and binomial inheritance not only decrease mean transcript level but also
increase transcription noise. For symmetric cell division and binomial inheritance,
the steady-state mean mRNA level increases with the average cell cycle duration.
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All results are confirmed by Gillespie stochastic simulation using plausible param-
eters. The mathematical formalism we explored provides a method for yielding
explicit formula of each moment of mRNA. Our method can be extended to more
complex cases of gene expression. Our next step is to take gene replication into
account and investigate the effects of specific phase of cell cycle on mean transcript
level and transcription noise.

Appendix A. Proofs of (1) and (2). Let U(t) be the number of active gene in a
single cell at time t. Then U(t) is a random process. U(t) = 0 and U(t) = 1 denote
the gene is inactive and active, respectively. By the assumption, we know

M(0) = m0, U(0) = 0.

Let

P (j)(m, t) = Pr{M(t) = m,U(t) = j}, m = 0, 1, 2, · · · , j = 0, 1

denote the probability that there are m mRNA molecules and j active genes. The
initial conditions are

P (j)(m, 0) =

{
1, m = m0, j = 0,

0, otherewise.
(9)

Then

P (m, t) = Pr{M(t) = m} = P (0)(m, t) + P (1)(m, t).

We can derive the following chemical master equations

∂

∂t

(
P (0)(m, t)

)
=− (kon + δm)P (0)(m, t) + koffP

(1)(m, t)

+ δ(m+ 1)P (0)(m+ 1, t),

∂

∂t

(
P (1)(m, t)

)
=konP

(0)(m, t)− (koff + µon +mδ)P (1)(m, t)

+ µonP
(1)(m− 1, t) + δ(m+ 1)P (1)(m+ 1, t).

(10)

To obtain the mean transcript level m(t) and second moment µ(t), we define

m(0)(t) =

∞∑
m=0

mP (0)(m, t), m(1)(t) =

∞∑
m=0

mP (1)(m, t)

and

µ(0)(t) =

∞∑
m=0

m2P (0)(m, t), µ(1)(t) =

∞∑
m=0

m2P (1)(m, t).

Then we have

m(t) = m(0)(t) +m(1)(t), µ(t) = µ(0)(t) + µ(1)(t),

which together with (9) yields

m(0) = m0, µ(0) = m2
0. (11)

Set

P (1)(t) =

∞∑
m=0

P (1)(m, t).

Then by [39, 52], we have

P (1)(t) =
kon

kon + koff
− kon
kon + koff

e−(kon+koff )t. (12)
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Multiplying both sides of each equation in (10) by m, and summing m from 0 to
∞, respectively, we obtainm(0)′(t) = −(kon + δ)m(0)(t) + koffm

(1)(t),

m(1)′(t) = konm
(0)(t)− (koff + δ)m(1)(t) + µonP

(1)(t).
(13)

It follows by summing its both sides that

m′(t) + δm(t) = µonP
(1)(t). (14)

Combining (14) with the initial condition (11) we get (1).
By eliminating m(0)(t) from (13) we can get the differential equation

m(1)′(t) + (kon + koff + δ)m(1)(t) = konm(t) + µonP
(1)(t). (15)

Combining with (9) we obtain the initial condition of m(1)(t)

m(1)(0) = 0. (16)

Solving equation (15) with the initial condition (16) we get

m(1)(t) =
m0kon

kon + koff

(
e−δt − e−(kon+koff+δ)t

)
+

µonkon(δ − koff )

δ(kon + koff )(kon + koff − δ)
e−(kon+koff )t

− k2
onµon

δ(kon + koff )(kon + koff − δ)
e−δt

− µonkonkoff
δ(kon + koff )(kon + koff + δ)

e−(kon+koff+δ)t

+
µonkon(kon + δ)

δ(kon + koff )(kon + koff + δ)
.

Now multiplying both sides of each equation in (10) by m2, and summing m from
0 to ∞, respectively, we get the differential equations

µ(0)′(t) =− (kon + 2δ)µ(0)(t) + koffµ
(1)(t) + δm(0)(t),

µ(1)′(t) =konµ
(0)(t)− (koff + 2δ)µ(1)(t) + (2µon + δ)m(1)(t)

+ µonP
(1)(t).

(17)

Adding the two equations in (17) yields

µ′(t) + 2δµ(t) = δm(t) + 2µonm
(1)(t) + µonP

(1)(t). (18)

Combining (18) with (1), (12) and the condition (11), we can get (2).
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