Research article Special Issues

A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data


  • Received: 24 June 2022 Revised: 21 August 2022 Accepted: 31 August 2022 Published: 08 September 2022
  • In this work, we suggest a reduced distribution with two parameters of the modified Weibull distribution to avoid some estimation difficulties. The hazard rate function of the reduced distribution exhibits decreasing, increasing or bathtub shape. The suggested reduced distribution can be applied to many problems of modelling lifetime data. Some statistical properties of the proposed distribution have been discussed. The maximum likelihood is employed to estimate the model parameters. The Fisher information matrix is derived and then applied to construct confidence intervals for parameters. A simulation is conducted to illustrate the performance of maximum likelihood estimation. Four sets of real data are tested to prove the proposed distribution advantages. According to the statistical criteria, the proposed distribution fits the tested data better than some well-known two-and three-parameter distributions.

    Citation: M. G. M. Ghazal, H. M. M. Radwan. A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13193-13213. doi: 10.3934/mbe.2022617

    Related Papers:

  • In this work, we suggest a reduced distribution with two parameters of the modified Weibull distribution to avoid some estimation difficulties. The hazard rate function of the reduced distribution exhibits decreasing, increasing or bathtub shape. The suggested reduced distribution can be applied to many problems of modelling lifetime data. Some statistical properties of the proposed distribution have been discussed. The maximum likelihood is employed to estimate the model parameters. The Fisher information matrix is derived and then applied to construct confidence intervals for parameters. A simulation is conducted to illustrate the performance of maximum likelihood estimation. Four sets of real data are tested to prove the proposed distribution advantages. According to the statistical criteria, the proposed distribution fits the tested data better than some well-known two-and three-parameter distributions.



    加载中


    [1] W. Weibull, A Statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), 293-297. https://doi.org/10.1115/1.4010337 doi: 10.1115/1.4010337
    [2] M. Xie, Y. Tang, T. N. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf., 76 (2002), 279-285. https://doi.org/10.1016/S0951-8320(02)00022-4 doi: 10.1016/S0951-8320(02)00022-4
    [3] C. D. Lai, M. Xie, D. N. P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab., 52 (2003), 33-37. https://doi.org/10.1109/TR.2002.805788 doi: 10.1109/TR.2002.805788
    [4] M. Bebbington, C. D. Lai, R. Zitikis, A flexible Weibull extension, Reliab. Eng. Syst. Saf., 92 (2007), 719-726. https://doi.org/10.1016/j.ress.2006.03.004 doi: 10.1016/j.ress.2006.03.004
    [5] M. Carrasco, E. M. Ortega, G. A. Paula, Log-modified Weibull regression models with censored data: Sensitivity and residual analysis, Comput. Stat. Data Anal., 52 (2008), 4021-4039. https://doi.org/10.1016/j.csda.2008.01.027 doi: 10.1016/j.csda.2008.01.027
    [6] M. Carrasco, E. M. Ortega, G. M. Cordeiro, A generalized modified Weibull distribution for lifetime modeling, Comput. Stat. Data Anal., 53 (2008), 450-462. https://doi.org/10.1016/j.csda.2008.08.023 doi: 10.1016/j.csda.2008.08.023
    [7] G. O. Silva, E. M. Ortega, G. M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal., 16 (2010), 409-430. https://doi.org/10.1007/s10985-010-9161-1 doi: 10.1007/s10985-010-9161-1
    [8] A. M. Sarhan, J. Apaloo, Exponentiated modified Weibull extension distribution, Reliab. Eng. Syst. Saf., 112 (2013), 137-144. https://doi.org/10.1016/j.ress.2012.10.013 doi: 10.1016/j.ress.2012.10.013
    [9] S. J. Almalki, J. Yuan, A new modified Weibull distribution, Reliab. Eng. Syst. Saf., 111 (2013), 164-170. https://doi.org/10.1016/j.ress.2012.10.018 doi: 10.1016/j.ress.2012.10.018
    [10] G. M. Cordeiro, E. M. Ortega, G. O. Silva, The Kumaraswamy modified Weibull distribution: theory and applications, J. Stat. Comput. Simul., 84 (2014), 1387-1411. https://doi.org/10.1080/00949655.2012.745125 doi: 10.1080/00949655.2012.745125
    [11] B. He, W. Cui, X. Du, An additive modified Weibull distribution, Reliab. Eng. Syst. Saf., 145 (2016), 28-37. https://doi.org/10.1016/j.ress.2015.08.010 doi: 10.1016/j.ress.2015.08.010
    [12] S. F. Bagheri, E. B. Samani, M. Ganjali, The generalized modified Weibull power series distribution: Theory and applications, Comput. Stat. Data Anal., 94 (2016), 136-160. https://doi.org/10.1016/j.csda.2015.08.008 doi: 10.1016/j.csda.2015.08.008
    [13] A. A. Ahmad, M. G. Ghazal, Exponentiated additive Weibull distribution, Reliab. Eng. Syst. Saf., 193 (2020), 106663. https://doi.org/10.1016/j.ress.2019.106663 doi: 10.1016/j.ress.2019.106663
    [14] A. Z. Afify, M. Nassar, G. M. Cordeiro, D. Kumar, The Weibull Marshall-Olkin Lindley distribution: properties and estimation, J. Taib. Univ. Sci., 14 (2020), 192-204. https://doi.org/10.1080/16583655.2020.1715017 doi: 10.1080/16583655.2020.1715017
    [15] S. J. Almalki, A reduced new modified Weibull distribution, Comm. Stat. Theory Meth., 47 (2018), 2297-2313. https://doi.org/10.1080/03610926.2013.857416 doi: 10.1080/03610926.2013.857416
    [16] M. K. Shakhatreh, A. J. Lemonte, G. M. Arenas, The log-normal modified Weibull distribution and its reliability implications, Reliab. Eng. Syst. Saf., 188 (2019), 6-22. https://doi.org/10.1016/j.ress.2019.03.014 doi: 10.1016/j.ress.2019.03.014
    [17] W. Q. Meeker, L. A. Escobar, Statistical Methods for Reliability Data, John Wiley, New York, 1998.
    [18] A. M. Abouammoh, S. A. Abdulghani, I. S. Qamber, On partial orderings and testing of new better than renewal used classes, Reliab. Eng. Syst. Saf., 43 (1994), 37-41. https://doi.org/10.1016/0951-8320(94)90094-9 doi: 10.1016/0951-8320(94)90094-9
    [19] T. Zhang, R. Dwight, K. El-Akruti, On a Weibull related distribution model with decreasing, increasing and upside-down bathtub-shaped failure rate, in Reliability Maintainability Symposium, 43 (2013), 28-31. https: //doi.org/10.1109/RAMS.2013.6517749
    [20] K. Xu, M. Xie, L. C. Tang, S. L. Ho, Application of neural networks in forecasting engine systems reliability, Appl. Soft Comput., 2 (2003), 255-268. https://doi.org/10.1016/S1568-4946(02)00059-5 doi: 10.1016/S1568-4946(02)00059-5
    [21] M. V. Aarset, How to identify bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106-108. https://doi.org/10.1109/TR.1987.5222310 doi: 10.1109/TR.1987.5222310
    [22] R. D. Gupta, D. Kundu, Exponentiated exponential family: An alternative to gamma and Weibull distributions, Biom. J., 43 (2001), 117-130. https://doi.org/10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
    [23] D. Kundu, M. Z. Raqab, Generalized Rayleigh distribution: Different methods of estimations, Comput. Stat. Data Anal., 49 (2005), 187-200. https://doi.org/10.1016/j.csda.2004.05.008 doi: 10.1016/j.csda.2004.05.008
    [24] M. E. Ghitany, D. K. Al-Mutairia, N. Balakrishnan, L. J. Al-Enezia, Power Lindley distribution and associated inference, Comput. Stat. Data Anal., 64 (2013), 20-33. https://doi.org/10.1016/j.csda.2013.02.026 doi: 10.1016/j.csda.2013.02.026
    [25] A. J. Lemonte, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Stat. Data Anal., 62 (2013), 149-170. https://doi.org/10.1016/j.csda.2013.01.011 doi: 10.1016/j.csda.2013.01.011
    [26] H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Cont., 19 (1974), 716-723. https://doi.org/10.1109/TAC.1974.1100705 doi: 10.1109/TAC.1974.1100705
    [27] C. M. Hurvich, C. L. Tsai, Regression and time series model selection in small samples, Biometrika, 76 (1989), 297-307. https://doi.org/10.1093/biomet/76.2.297 doi: 10.1093/biomet/76.2.297
    [28] G. Schwarz, Estimating the Dimension of a Model, Ann. Stat., 6 (1978), 461-464. https://doi.org/10.1214/aos/1176344136 doi: 10.1214/aos/1176344136
    [29] E. J. Hannan, B. G. Quinn, The determination of the order of an autoregression, J. R. Stat. Soc. Ser. B, 41 (1979), 190-195. https://doi.org/10.1111/j.2517-6161.1979.tb01072.x doi: 10.1111/j.2517-6161.1979.tb01072.x
    [30] G. Chen, N. Balakrishnan, A general purpose approximate goodness-of-fit test, J. Qual. Tech., 27 (1995), 154-161. https://doi.org/10.1080/00224065.1995.11979578 doi: 10.1080/00224065.1995.11979578
    [31] B. Bergman, B. Klefsjo, The total time on test concept and its use in reliability theory, Oper. Res., 32 (1984), 596-606. https://doi.org/10.1287/opre.32.3.596 doi: 10.1287/opre.32.3.596
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1963) PDF downloads(84) Cited by(5)

Article outline

Figures and Tables

Figures(12)  /  Tables(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog