This paper provides a multiplicity result of solutions with one node for a class of (non-degenerate) classical diffusive logistic equations. Although reminiscent of the multiplicity theorem of López-Gómez and Rabinowitz [
Citation: Pablo Cubillos, Julián López-Gómez, Andrea Tellini. Multiplicity of nodal solutions in classical non-degenerate logistic equations[J]. Electronic Research Archive, 2022, 30(3): 898-928. doi: 10.3934/era.2022047
This paper provides a multiplicity result of solutions with one node for a class of (non-degenerate) classical diffusive logistic equations. Although reminiscent of the multiplicity theorem of López-Gómez and Rabinowitz [
[1] | J. López-Gómez, P. H. Rabinowitz, The structure of the set of 1-node solutions of a class of degenerate BVP's, J. Differ. Equ., 268 (2020), 4691–4732. https://doi.org/10.1016/j.jde.2019.10.040 doi: 10.1016/j.jde.2019.10.040 |
[2] | H. Brézis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55–64. https://doi.org/10.1016/0362-546X(86)90011-8 doi: 10.1016/0362-546X(86)90011-8 |
[3] | T. Ouyang, On the positive solutions of semilinear equations ${\Delta} u +{\lambda} u - hu^p = 0$ on the compact manifolds, Trans. Amer. Math. Soc., 331 (1992), 503–527. https://doi.org/10.2307/2154124 doi: 10.2307/2154124 |
[4] | J. M. Fraile, P. Koch, J. López-Gómez, S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Differ. Equ., 127 (1996), 295–319. https://doi.org/10.1006/jdeq.1996.0071 doi: 10.1006/jdeq.1996.0071 |
[5] | J. López-Gómez, Metasolutions in Parabolic Equations of Population Dynamics, CRC Press, Boca Raton, Florida, 2015. |
[6] | D. Daners, J. López-Gómez, Global dynamics of generalized logistic equations, Adv. Nonlinear Stud., 18 (2018), 217–236. https://doi.org/10.1515/ans-2018-0008 doi: 10.1515/ans-2018-0008 |
[7] | J. López-Gómez, M. Molina-Meyer, P. H. Rabinowitz, Global bifurcation diagrams of one-node solutions on a class of degenerate boundary value problems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 923–946. https://doi.org/10.3934/dcdsb.2017047 doi: 10.3934/dcdsb.2017047 |
[8] | P. Cubillos, The Logistic Equation. Theory and Numerics, Master Thesis in Mathematics and Applications, Sorbonne Université, Paris, December 2020. |
[9] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9 doi: 10.1016/0022-1236(71)90030-9 |
[10] | P. H. Rabinowitz, A note on a nonlinear eigenvalue problem for a class of differential equations, J. Differ. Equ., 9 (1971), 536–548. https://doi.org/10.1016/0022-0396(71)90022-2 doi: 10.1016/0022-0396(71)90022-2 |
[11] | P. H. Rabinowitz, A note on pairs of solutions of a nonlinear Sturm-Liouville problem, Manuscripta Math., 11 (1974), 273–282. https://doi.org/10.1007/BF01173718 doi: 10.1007/BF01173718 |
[12] | J. López-Gómez, J. C. Sampedro, Bifurcation Theory for Fredholm operators, arXiv: 2105.12193. |
[13] | J. López-Gómez, Spectral Theory and Nonlinear Functional Analysts, CRC Press, Boca Raton, Florida, 2001. https://doi.org/10.1201/9781420035506 |
[14] | E. N. Dancer, Global solution branches for positive mappings, Arch. Rational Mech. Anal., 52 (1973), 181–192. https://doi.org/10.1007/BF00282326 doi: 10.1007/BF00282326 |
[15] | E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, Bull. London Math. Soc., 34 (2002) 533–538. https://doi.org/10.1112/S002460930200108X |
[16] | J. López-Gómez, P. H. Rabinowitz, Nodal Solutions for a Class of Degenerate Boundary Value Problems, Adv. Nonlinear Stud., 15 (2015), 253–288. https://doi.org/10.1515/ans-2015-0201 doi: 10.1515/ans-2015-0201 |
[17] | J. López-Gómez, P. H. Rabinowitz, Nodal solutions for a class of degenerate one-dimensional BVP's, Top. Methods Nonlinear Anal., 49 (2017), 359–376. https://doi.org/10.12775/tmna.2016.087 doi: 10.12775/tmna.2016.087 |
[18] | J. López-Gómez, A. Tellini, Generating an arbitrarily large number of isolas in a superlinear indefinite problem, Nonlinear Anal., 108 (2014), 223–248. https://doi.org/10.1016/j.na.2014.06.003 doi: 10.1016/j.na.2014.06.003 |
[19] | M. G. Crandall, P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. https://doi.org/10.1016/0022-1236(71)90015-2 doi: 10.1016/0022-1236(71)90015-2 |
[20] | G. Buttazzo, M. Giaquinta, S. Hildebrandt, One-Dimensional Variational Problems, Clarendon Press, Oxford, 1998. |
[21] | J. López-Gómez, L. Maire, Uniqueness of large positive solutions, Z. Angew. Math. Phys., 68 (2017), Paper No. 86. https://doi.org/10.1007/s00033-017-0829-1 doi: 10.1007/s00033-017-0829-1 |
[22] | J. López-Gómez, L. Maire, L. Véron, General uniqueness results for large solutions, Z. Angew. Math. Phys., 71 (2017), Paper No. 109. https://doi.org/10.1007/s00033-020-01325-5 doi: 10.1007/s00033-020-01325-5 |
[23] | J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific, Singapore, 2013. https://doi.org/10.1142/8664 |
[24] | J. López-Gómez, Dynamics of classical solutions. From classical solutions to metasolutions, Diff. Int. Equ., 16 (2003), 813–828. |
[25] | J. B. Keller, On solutions of ${\Delta} u = f(u)$, Comm. Pure Appl. Math., X (1957), 503–510. https://doi.org/10.1002/cpa.3160100402 doi: 10.1002/cpa.3160100402 |
[26] | R. Osserman, On the inequality ${\Delta} u \geq f(u)$, Pacific. J. Math., 7 (1957), 1641–1647. |
[27] | J. López-Gómez, Large solutions, metasolutions, and asymptotic behaviour of the regular positive solutions of sublinear parabolic problems, Electron. J. Differ. Equ. Conf., 5 (2000), 135–171. |
[28] | J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems, Trans. Amer. Math. Soc., 352 (2000), 1825–1858. https://doi.org/10.1090/S0002-9947-99-02352-1 doi: 10.1090/S0002-9947-99-02352-1 |
[29] | M. G. Crandall, P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161–180. https://doi.org/10.1007/BF00282325 doi: 10.1007/BF00282325 |
[30] | E. N. Dancer, J. López-Gómez, Semiclassical analysis of general second order elliptic operators on bounded domains, Trans. Amer. Math. Soc., 352 (2000), 3723–3742. https://doi.org/10.1090/S0002-9947-00-02534-4 doi: 10.1090/S0002-9947-00-02534-4 |
[31] | R. Gómez-Reñasco, J. López-Gómez, On the existence and numerical computation of classical and non-classical solutions for a family of elliptic boundary value problems, Nonl. Anal. TMA, 48 (2002), 567–605. https://doi.org/10.1016/S0362-546X(00)00208-X doi: 10.1016/S0362-546X(00)00208-X |
[32] | J. López-Gómez, J. C. Eilbeck, M. Molina-Meyer, K. Duncan, Structure of solution manifolds in a strongly coupled elliptic system, IMA J. Numer. Anal., 12 (1992), 405–428. https://doi.org/10.1093/imanum/12.3.405 doi: 10.1093/imanum/12.3.405 |
[33] | J. López-Gómez, M. Molina-Meyer, Superlinear indefinite systems: Beyond Lotka Volterra models, J. Differ. Equ., 221 (2006), 343–411. https://doi.org/10.1016/j.jde.2005.05.009 doi: 10.1016/j.jde.2005.05.009 |
[34] | J. López-Gómez, M. Molina-Meyer, A. Tellini, Intricate dynamics caused by facilitation in competitive environments within polluted habitat patches, Eur. J. Appl. Maths., 25 (2014), 213–229. https://doi.org/10.1017/S0956792513000429 doi: 10.1017/S0956792513000429 |
[35] | M. Fencl, J. López-Gómez, Nodal solutions of weighted indefinite problems, J. Evol. Equ., 21 (2021), 2815–2835. https://doi.org/10.1007/s00028-020-00625-7 doi: 10.1007/s00028-020-00625-7 |
[36] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Mechanics, Springer, Berlin, Germany, 1988. https://doi.org/10.1007/978-3-642-84108-8 |
[37] | J. C. Eilbeck, The pseudo-spectral method and path-following in reaction-diffusion bifurcation studies, SIAM J. Sci. Stat. Comput., 7 (1986), 599–610. https://doi.org/10.1137/0907040 doi: 10.1137/0907040 |
[38] | M. J. C. Gover, The eigenproblem of a tridiagonal $2$-Toeplitz matrix, Linear Algebra Appl., 197/198 (1994), 63–78. https://doi.org/10.1016/0024-3795(94)90481-2 doi: 10.1016/0024-3795(94)90481-2 |
[39] | F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, part I: Branches of nonsingular solutions, Numer. Math., 36 (1980), 1–25. https://doi.org/10.1007/BF01395985 doi: 10.1007/BF01395985 |
[40] | F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, part II: Limit points, Numer. Math., 37 (1981), 1–28. https://doi.org/10.1007/BF01396184 doi: 10.1007/BF01396184 |
[41] | F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, part III: Simple bifurcation points, Numer. Math., 38 (1981), 1–30. https://doi.org/10.1007/BF01395805 doi: 10.1007/BF01395805 |
[42] | J. López-Gómez, M. Molina-Meyer, M. Villareal, Numerical coexistence of coexistence states, SIAM J. Numer. Anal., 29 (1992), 1074–1092. https://doi.org/10.1137/0729065 doi: 10.1137/0729065 |
[43] | J. López-Gómez, Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéricos, Cuadernos de Matemática y Mecánica, Serie Cursos y Seminarios 4, Santa Fe, R. Argentina, 1988. |
[44] | E. L. Allgower, K. Georg, Introduction to Numerical Continuation Methods SIAM Classics in Applied Mathematics 45, SIAM, Philadelphia, 2003. https://doi.org/10.1137/1.9780898719154 |
[45] | M. Crouzeix, J. Rappaz, On Numerical Approximation in Bifurcation Theory, Recherches en Mathématiques Appliquées 13, Masson, Paris, 1990. |
[46] | H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Insitute of Fundamental Research, Springer, Berlin, Germany, 1986. |
[47] | H. B. Keller, Z. H. Yang, A direct method for computing higher order folds, SIAM J. Sci. Stat., 7 (1986), 351–361. https://doi.org/10.1137/0907024 doi: 10.1137/0907024 |
[48] | J. López-Gómez, M. Molina-Meyer, A. Tellini, Spiraling bifurcation diagrams in superlinear indefinite problems, Discrete Contin. Dyn. Syst., 35 (2015), 1561–1588. https://doi.org/10.3934/dcds.2015.35.1561 doi: 10.3934/dcds.2015.35.1561 |