In this paper, we consider the existence of least energy nodal solution and ground state solution, energy doubling property for the following fractional critical problem
$ \begin{cases} -(a+ b\|u\|_{K}^{2})\mathcal{L}_K u+V(x)u = |u|^{2^{\ast}_{\alpha}-2}u+ k f(x,u),&x\in\Omega,\\ u = 0,&x\in\mathbb{R}^{3}\backslash\Omega, \end{cases} $
where $ k $ is a positive parameter, $ \mathcal{L}_K $ stands for a nonlocal fractional operator which is defined with the kernel function $ K $. By using the nodal Nehari manifold method, we obtain a least energy nodal solution $ u $ and a ground state solution $ v $ to this problem when $ k\gg1 $, where the nonlinear function $ f:\mathbb{R}^{3}\times\mathbb{R}\rightarrow \mathbb{R} $ is a Carathéodory function.
Citation: Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity[J]. Electronic Research Archive, 2021, 29(5): 3281-3295. doi: 10.3934/era.2021038
In this paper, we consider the existence of least energy nodal solution and ground state solution, energy doubling property for the following fractional critical problem
$ \begin{cases} -(a+ b\|u\|_{K}^{2})\mathcal{L}_K u+V(x)u = |u|^{2^{\ast}_{\alpha}-2}u+ k f(x,u),&x\in\Omega,\\ u = 0,&x\in\mathbb{R}^{3}\backslash\Omega, \end{cases} $
where $ k $ is a positive parameter, $ \mathcal{L}_K $ stands for a nonlocal fractional operator which is defined with the kernel function $ K $. By using the nodal Nehari manifold method, we obtain a least energy nodal solution $ u $ and a ground state solution $ v $ to this problem when $ k\gg1 $, where the nonlinear function $ f:\mathbb{R}^{3}\times\mathbb{R}\rightarrow \mathbb{R} $ is a Carathéodory function.
[1] | N. Abatangelo and X. Ros-Oton, Obstacle problems for integro-differential operators: Higher regularity of free boundaries, Advances in Mathematics, 360 (2020), 106931. doi: 10.1016/j.aim.2019.106931 |
[2] | An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. (2007) 32: 1245-1260. |
[3] | Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R}^{N}$. Acta Mathematica Scientia Ser. B (Engl. Ed.) (2018) 38: 1712-1730. |
[4] | G. Gu, Y. Yu and F. Zhao, The least energy sign-changing solution for a nonlocal problem, J. Math. Phys., 58 (2017), 051505. doi: 10.1063/1.4982960 |
[5] | Infinitely many sign-changing solutions for a nonlocal problem. Annali di Matematica Pura Appl. (2018) 197: 1429-1444. |
[6] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[7] | J. Korvenpää, T. Kuusi and G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var. Partial Differ. Equ., 55 (2016), 63. doi: 10.1007/s00526-016-0999-2 |
[8] | Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Contin. Dyn. Syst. Ser. A (2015) 35: 6031-6068. |
[9] | Positive solution for a class of nonlocal elliptic equations. Applied Mathematics Letters (2019) 88: 125-131. |
[10] | H. Luo, X. Tang and Z. Gao, Ground state sign-changing solutions for fractional Kirchhoff equations in bounded domains, J. Math. Phys., 59 (2018), 031504. doi: 10.1063/1.5026674 |
[11] | Characteristic values associated with a class of non-linear second-order differential equations. Acta Math. (1961) 105: 141-175. |
[12] | Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. (2013) 33: 2105-2137. |
[13] | Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. (2012) 389: 887-898. |
[14] | Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equations (2015) 259: 1256-1274. |
[15] | Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equations (2016) 261: 2384-2402. |
[16] | Two nontrivial solutions for an elliptic problem involving some nonlocal integro-differential operators. Annali di Matematica Pura ed Applicata (2015) 194: 1455-1468. |
[17] | D.-B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501, 19 pp.. doi: 10.1063/1.5074163 |
[18] | Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc. Var. Partial Differ. Equ. (2006) 27: 421-437. |
[19] | Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. (2006) 317: 456-463. |
[20] | On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth. J Math Anal Appl. (2015) 428: 387-404. |