We prove the Nonvanishing conjecture for uniruled projective log canonical pairs of dimension $ n $, assuming the Nonvanishing conjecture for smooth projective varieties in dimension $ n-1 $. We also show that the existence of good minimal models for non-uniruled projective klt pairs in dimension $ n $ implies the existence of good minimal models for projective log canonical pairs in dimension $ n $.
Citation: Vladimir Lazić, Fanjun Meng. On Nonvanishing for uniruled log canonical pairs[J]. Electronic Research Archive, 2021, 29(5): 3297-3308. doi: 10.3934/era.2021039
We prove the Nonvanishing conjecture for uniruled projective log canonical pairs of dimension $ n $, assuming the Nonvanishing conjecture for smooth projective varieties in dimension $ n-1 $. We also show that the existence of good minimal models for non-uniruled projective klt pairs in dimension $ n $ implies the existence of good minimal models for projective log canonical pairs in dimension $ n $.
[1] | The moduli $b$-divisor of an lc-trivial fibration. Compos. Math. (2005) 141: 385-403. |
[2] | Ascending chain condition for log canonical thresholds and termination of log flips. Duke Math. J. (2007) 136: 173-180. |
[3] | On existence of log minimal models II. J. Reine Angew. Math. (2011) 658: 99-113. |
[4] | Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. (2010) 23: 405-468. |
[5] | The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom. (2013) 22: 201-248. |
[6] | S. R. Choi, The Geography of Log Models and its Applications, PhD Thesis, Johns Hopkins University, 2008. |
[7] | O. Debarre, Higher-Dimensional Algebraic Geometry, Universitext, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-5406-3 |
[8] | Extension theorems, non-vanishing and the existence of good minimal models. Acta Math. (2013) 210: 203-259. |
[9] | A note on the abundance conjecture. Algebraic Geometry (2015) 2: 476-488. |
[10] | O. Fujino, Special termination and reduction to pl flips, in Flips for 3-folds and 4-folds (ed. A. Corti), vol. 35 of Oxford Lecture Ser. Math. Appl., Oxford Univ. Press, 2007, 63-75. doi: 10.1093/acprof:oso/9780198570615.003.0004 |
[11] | O. Fujino, What is log terminal?, in Flips for 3-folds and 4-folds (ed. A. Corti), vol. 35 of Oxford Lecture Ser. Math. Appl., Oxford Univ. Press, 2007, 49-62. doi: 10.1093/acprof:oso/9780198570615.003.0003 |
[12] | Fundamental theorems for the log minimal model program. Publ. Res. Inst. Math. Sci. (2011) 47: 727-789. |
[13] | On canonical bundle formulas and subadjunctions. Michigan Math. J. (2012) 61: 255-264. |
[14] | On the minimal model theory for dlt pairs of numerical log Kodaira dimension zero. Math. Res. Lett. (2011) 18: 991-1000. |
[15] | Reduction maps and minimal model theory. Compos. Math. (2013) 149: 295-308. |
[16] | C. D. Hacon and C. Xu, On finiteness of B-representations and semi-log canonical abundance, in Minimal Models and Extremal Rays (Kyoto, 2011), vol. 70 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 2016,361–377. |
[17] | J. Han and Z. Li, Weak Zariski decompositions and log terminal models for generalized polarized pairs, arXiv: 1806.01234. |
[18] | On the non-vanishing conjecture and existence of log minimal models. Publ. Res. Inst. Math. Sci. (2018) 54: 89-104. |
[19] | On minimal model theory for log abundant lc pairs. J. Reine Angew. Math. (2020) 767: 109-159. |
[20] | Log canonical pairs over varieties with maximal Albanese dimension. Pure Appl. Math. Q. (2016) 12: 543-571. |
[21] | Pluricanonical systems on minimal algebraic varieties. Invent. Math. (1985) 79: 567-588. |
[22] | Log abundance theorem for threefolds. Duke Math. J. (1994) 75: 99-119. |
[23] | Log canonical singularities are Du Bois. J. Amer. Math. Soc. (2010) 23: 791-813. |
[24] | (1998) Birational Geometry of Algebraic Varieties, vol. 134 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press. |
[25] | V. Lazić and Th. Peternell, Abundance for varieties with many differential forms, Épijournal Geom. Algébrique, 2 (2018), Article 1. doi: 10.46298/epiga.2018.volume2.3867 |
[26] | On Generalised Abundance, II. Peking Math. J. (2020) 3: 1-46. |
[27] | V. Lazić and N. Tsakanikas, On the existence of minimal models for log canonical pairs, arXiv: 1905.05576, to appear in Publ. Res. Inst. Math. Sci. |
[28] | Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, in Algebraic Geometry, Sendai, 1985, vol. 10 of Adv. Stud. Pure Math., North-Holland, Amsterdam, 1987,449–476. doi: 10.2969/aspm/01010449 |
[29] | On the Kodaira dimension of minimal threefolds. Math. Ann. (1988) 281: 325-332. |
[30] | N. Nakayama, Zariski-Decomposition and Abundance, vol. 14 of MSJ Memoirs, Mathematical Society of Japan, Tokyo, 2004. |
[31] | $3$-fold log models. J. Math. Sci. (1996) 81: 2667-2699. |