The fractional-stochastic Fokas-Lenells equation (FSFLE) in the Stratonovich sense is taken into account here. The modified mapping method is used to generate new trigonometric, hyperbolic, elliptic and rational stochastic fractional solutions. Because the Fokas-Lenells equation has many implementations in telecommunication modes, complex system theory, quantum field theory, and quantum mechanics, the obtained solutions can be employed to describe a wide range of exciting physical phenomena. We plot several 2D and 3D diagrams to demonstrate how multiplicative noise and fractional derivatives affect the analytical solutions of the FSFLE. Also, we show how multiplicative noise at zero stabilizes FSFLE solutions.
Citation: Sahar Albosaily, Wael Mohammed, Mahmoud El-Morshedy. The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication[J]. Electronic Research Archive, 2023, 31(6): 3552-3567. doi: 10.3934/era.2023180
The fractional-stochastic Fokas-Lenells equation (FSFLE) in the Stratonovich sense is taken into account here. The modified mapping method is used to generate new trigonometric, hyperbolic, elliptic and rational stochastic fractional solutions. Because the Fokas-Lenells equation has many implementations in telecommunication modes, complex system theory, quantum field theory, and quantum mechanics, the obtained solutions can be employed to describe a wide range of exciting physical phenomena. We plot several 2D and 3D diagrams to demonstrate how multiplicative noise and fractional derivatives affect the analytical solutions of the FSFLE. Also, we show how multiplicative noise at zero stabilizes FSFLE solutions.
[1] | X. Liu, J. Zheng, Convergence rates of solutions in apredator-preysystem with indirect pursuit-evasion interaction in domains of arbitrary dimension, Discrete Contin. Dyn. Syst., 28 (2023), 2269–2293. https://doi.org/10.3934/dcdsb.2022168 doi: 10.3934/dcdsb.2022168 |
[2] | M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis Stokes system with rotation flux components, J. Evol. Equations, 18 (2018), 1267–1289. https://doi.org/10.1007/s00028-018-0440-8 doi: 10.1007/s00028-018-0440-8 |
[3] | J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equations, 267 (2019), 2385–2415. https://doi.org/10.1016/j.jde.2019.03.013 doi: 10.1016/j.jde.2019.03.013 |
[4] | J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modelling coral fertilization, J. Differ. Equations, 272 (2021), 164–202. https://doi.org/10.1016/j.jde.2020.09.029 doi: 10.1016/j.jde.2020.09.029 |
[5] | J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Differ. Equations, 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003 |
[6] | W. W. Mohammed, C. Cesarano, F. M. Al-Askar, Solutions to the (4+1)-dimensional time-fractional fokas equation with M-Truncated derivative, Mathematics, 11 (2023), 194. https://doi.org/10.3390/math11010194 doi: 10.3390/math11010194 |
[7] | R. Rao, Z. Lin, X. Ai, J. Wu, Synchronization of epidemic systems with Neumann boundary value under delayed impulse, Mathematics, 10 (2022), 2064. https://doi.org/10.3390/math10122064 doi: 10.3390/math10122064 |
[8] | G. Li, Y. Zhang, Y. J. Guan, W. J. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303 |
[9] | Q. Zhu, F. Kong, Z. Cai, Advanced symmetry methods for dynamics, control, optimization and applications, Symmetry, 15 (2023), 26. |
[10] | Y. Zhao, L. Wang, Practical exponential stability of impulsive stochastic food chain system with time-varying delays, Mathematics, 11 (2023), 147. https://doi.org/10.3390/math11010147 doi: 10.3390/math11010147 |
[11] | K. Li, R. Li, L. Cao, Y. Feng, B. O. Onasanya, Periodically intermittent control of Memristor-based hyper-chaotic bao-like system, Mathematics, 11 (2023), 1264. https://doi.org/10.3390/math11051264 doi: 10.3390/math11051264 |
[12] | Y. Gurefe, E. Misirli, Exp-function method for solving nonlinear evolution equations with higher order nonlinearity, Comput. Math. Appl., 61 (2011), 2025–2030. https://doi.org/10.1016/j.camwa.2010.08.060 doi: 10.1016/j.camwa.2010.08.060 |
[13] | W. W. Mohammed, Approximate solutions for stochastic time-fractional reaction–diffusion equations with multiplicative noise, Math. Methods Appl. Sci., 44 (2021), 2140–2157. https://doi.org/10.1002/mma.6925 doi: 10.1002/mma.6925 |
[14] | W. W. Mohammed, Modulation equation for the stochastic Swift–Hohenberg equation with cubic and quintic nonlinearities on the real line, Mathematics, 7 (2019). https://doi.org/10.3390/math7121217 doi: 10.3390/math7121217 |
[15] | F. M. Al-Askar, W. W. Mohammed, E. S. Aly, M. EL-Morshedy, Exact solutions of the stochastic Maccari system forced by multiplicative noise, J. Appl. Math. Mech., 2022 (2022). https://doi.org/10.1002/zamm.202100199 doi: 10.1002/zamm.202100199 |
[16] | C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224 (1996), 77–84. https://doi.org/10.1016/S0375-9601(96)00770-0 doi: 10.1016/S0375-9601(96)00770-0 |
[17] | K. A. Gepreel, T. Nofal, Optimal homotopy analysis method nonlinear fractional differential equation, Math. Sci., 9 (2015), 47–55. https://doi.org/10.1007/s40096-015-0147-8 doi: 10.1007/s40096-015-0147-8 |
[18] | E. M. Askar, W. W. Mohammed, A. M. Albalahi, M. El-Morshedy, The impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh–coth method, Mathematics, 10 (2022), 817. https://doi.org/10.3390/math10050817 doi: 10.3390/math10050817 |
[19] | W. Malfliet, W. Hereman, The tanh method: Ⅰ. Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54 (1996), 563–568. https://doi.org/10.1088/0031-8949/54/6/003 doi: 10.1088/0031-8949/54/6/003 |
[20] | Z. L. Yan, Abunbant families of Jacobi elliptic function solutions of the dimensional integrable Davey-Stewartson-type equation via a new method, Chaos Solitons Fractals, 18 (2003), 299–309. https://doi.org/10.1016/S0960-0779(02)00653-7 doi: 10.1016/S0960-0779(02)00653-7 |
[21] | R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. https://doi.org/10.1143/JPSJ.33.1456 doi: 10.1143/JPSJ.33.1456 |
[22] | K. Khan, M. A. Akbar, The $exp(-\Phi (\varsigma))$ -expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. Syst. Differ. Equation, 5 (2014), 72–83. https://doi.org/10.1504/IJDSDE.2014.067119 doi: 10.1504/IJDSDE.2014.067119 |
[23] | Y. Pandir, Y. Gurefe, E. Misirli, A multiple extended trial equation method for the fractional Sharma-Tasso-Olver equation, in AIP Conference Proceedings, 1558 (2013), 1927–1930. https://doi.org/10.1063/1.4825910 |
[24] | Y. Pandir, Y. Gurefe, E. Misirli, The extended trial equation method for some time fractional differential equations, Discrete Dyn. Nat. Soc., 2013 (2013). https://doi.org/10.1155/2013/491359 doi: 10.1155/2013/491359 |
[25] | F. M. Al-Askar, C. Cesarano, W. W. Mohammed, The analytical solutions of stochastic-fractional Drinfel'd-Sokolov-Wilson equations via $ (G^{\prime }/G)$-expansion method, Symmetry, 14 (2022), 2105. https://doi.org/10.3390/sym14102105 doi: 10.3390/sym14102105 |
[26] | H. Zhang, New application of the $(G^{\prime }/G)$ -expansion method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3220–3225. https://doi.org/10.1016/j.cnsns.2009.01.006 doi: 10.1016/j.cnsns.2009.01.006 |
[27] | M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy pour l'équation des ondes, Bull. Soc. Math. France, 67 (1939), 153–170. |
[28] | K. L. Wang, S. Y. Liu, He's fractional derivative and its application for fractional Fornberg-Whitham equation, Therm. Sci., 1 (2016), 54–54. https://doi.org/10.2298/TSCI151025054W doi: 10.2298/TSCI151025054W |
[29] | S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, USA, 1993. |
[30] | M. Caputo, M. Fabrizio, A new definition of fractional differential without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[31] | M. Mouy, H. Boulares, S. Alshammari, M. Alshammari, Y. Laskri, W. Mohammed, On averaging principle for Caputo–Hadamard fractional stochastic differential pantograph equation, Fractal Fract., 7 (2023), 31. https://doi.org/10.3390/fractalfract7010031 doi: 10.3390/fractalfract7010031 |
[32] | R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[33] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081 |
[34] | J. V. Sousa, E. C. de Oliveira, A new truncated Mfractional derivative type unifying some fractional derivative types with classical properties, Int. J. Anal. Appl., 16 (2018), 83–96. https://doi.org/10.28924/2291-8639 doi: 10.28924/2291-8639 |
[35] | W. W. Mohammed, Fast-diffusion limit for reaction–diffusion equations with degenerate multiplicative and additive noise, J. Dyn. Differ. Equation, 33 (2021), 577–592. https://doi.org/10.1007/s10884-020-09821-y doi: 10.1007/s10884-020-09821-y |
[36] | W. W. Mohammed, The Soliton Solutions of the Stochastic Shallow Water Wave Equations in the Sense of Beta-Derivative, mathematics, 11 (2023), 1338. https://doi.org/10.3390/math11061338 doi: 10.3390/math11061338 |
[37] | S. T. Demiray, H. Bulut, New exact solutions of the new Hamiltonian amplitude equation and Fokas-Lenells equation, Entropy, 17 (2015), 6025–6043. https://doi.org/10.3390/e17096025 doi: 10.3390/e17096025 |
[38] | J. Xu, E. Fan, Leading-order temporal asymptotics of the Fokas-Lenells Equation without solitons, arXiv preprint, 2013, arXiv: 1308.0755. https://doi.org/10.48550/arXiv.1308.0755 |
[39] | P. Zhao, E. Fan, Y. Hou, Algebro-geometric solutions and their reductions for the Fokas-Lenells hierarchy, J. Nonlinear Math. Phys., 20 (2013), 355–393. https://doi.org/10.1080/14029251.2013.854094 doi: 10.1080/14029251.2013.854094 |
[40] | P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, SpringerVerlag, New York, 1995. https://doi.org/10.1007/978-3-662-12616-5 |
[41] | A. H. Bhrawy, M. A. Abdelkawy, S. Kumar, S. Johnson, A. Biswas, Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas, Indian J. Phys., 87 (2013), 455–463. https://doi.org/10.1007/s12648-013-0248-x doi: 10.1007/s12648-013-0248-x |
[42] | T. Caraballo, J. A. Langa, J. Valero, Stabilisation of differential inclusions and PDEs without uniqueness by noise, Commun. Pure Appl. Anal., 7 (2008), 1375–1392. https://doi.org/10.3934/cpaa.2008.7.1375 doi: 10.3934/cpaa.2008.7.1375 |
[43] | T. Caraballo, J. C. Robinson, Stabilisation of linear PDEs by Stratonovich noise, Syst. Control Lett., 53 (2004), 41–50. https://doi.org/10.1016/j.sysconle.2004.02.020 doi: 10.1016/j.sysconle.2004.02.020 |
[44] | Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Autom. Control, 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067 |
[45] | W. Hu, Q. Zhu, H. R. Karimi, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE Trans. Autom. Control, 64 (2019), 5207–5213. |