Research article

Global dynamics of a time-delayed malaria model with asymptomatic infections and standard incidence rate

  • Received: 12 February 2023 Revised: 24 March 2023 Accepted: 02 April 2023 Published: 23 April 2023
  • A time-delayed model of malaria transmission with asymptomatic infections and standard incidence rate is presented and its basic reproduction number $ {R}_{0} $ is calculated. We focus on the global dynamics of the model with respect to $ {R}_{0} $. If and only if $ {R}_{0} > 1 $, the model exists a unique malaria-infected equilibrium $ E^{\ast} $, whereas it always possesses the malaria-free equilibrium $ E_{0} $. We first prove the local stability of the equilibria $ E_0 $ and $ E^{\ast} $ by using proof by contradiction and the properties of complex modulus. Secondly, by utilizing the Lyapunov functional method and the limiting system of the model with some novel details, we show that the equilibrium $ {E}_{0} $ is globally asymptotically stable (GAS) when $ {R}_{0} < 1 $, globally attractive (GA) when $ {R}_{0} = 1 $ and unstable when $ {R}_{0} > 1 $; the equilibrium $ E^{\ast} $ is GAS if and only if $ {R}_{0} > 1 $. In particular, in order to obtain global attractivity of the equilibrium $ E^{\ast} $, we demonstrate the weak persistence of the system for $ {R}_{0} > 1 $. Our results imply that malaria will gradually disappear if $ {R}_{0}\leq1 $ and persistently exist if $ {R}_{0} > 1 $.

    Citation: Songbai Guo, Xin Yang, Zuohuan Zheng. Global dynamics of a time-delayed malaria model with asymptomatic infections and standard incidence rate[J]. Electronic Research Archive, 2023, 31(6): 3534-3551. doi: 10.3934/era.2023179

    Related Papers:

  • A time-delayed model of malaria transmission with asymptomatic infections and standard incidence rate is presented and its basic reproduction number $ {R}_{0} $ is calculated. We focus on the global dynamics of the model with respect to $ {R}_{0} $. If and only if $ {R}_{0} > 1 $, the model exists a unique malaria-infected equilibrium $ E^{\ast} $, whereas it always possesses the malaria-free equilibrium $ E_{0} $. We first prove the local stability of the equilibria $ E_0 $ and $ E^{\ast} $ by using proof by contradiction and the properties of complex modulus. Secondly, by utilizing the Lyapunov functional method and the limiting system of the model with some novel details, we show that the equilibrium $ {E}_{0} $ is globally asymptotically stable (GAS) when $ {R}_{0} < 1 $, globally attractive (GA) when $ {R}_{0} = 1 $ and unstable when $ {R}_{0} > 1 $; the equilibrium $ E^{\ast} $ is GAS if and only if $ {R}_{0} > 1 $. In particular, in order to obtain global attractivity of the equilibrium $ E^{\ast} $, we demonstrate the weak persistence of the system for $ {R}_{0} > 1 $. Our results imply that malaria will gradually disappear if $ {R}_{0}\leq1 $ and persistently exist if $ {R}_{0} > 1 $.



    加载中


    [1] M. Safan, A. Ghazi, Demographic impact and control lability of malaria in an SIS model with proportional fatality, Bull. Malays. Math. Sci. Soc., 39 (2016), 65–86. https://doi.org/10.1007/S40840-015-0181-6 doi: 10.1007/S40840-015-0181-6
    [2] World Health Organization, Malaria, 2023, Available from: https://www.who.int/news-room/fact-sheets/detail/malaria.
    [3] Q. Ding, J. Liu, Z. Guo, Dynamics of a malaria infection model with time delay, Math. Biosci. Eng., 16 (2019), 4885–4907. https://doi.org/10.3934/mbe.2019246 doi: 10.3934/mbe.2019246
    [4] D. D. Laishram, P. L. Sutton, N. Nanda, V. L. Sharma, R. C. Sobti, J. M. Carlton, et al., The complexities of malaria disease manifestations with a focus on asymptomatic malaria, Malar. J., 11 (2012), 29–44. https://doi.org/10.1186/1475-2875-11-29 doi: 10.1186/1475-2875-11-29
    [5] S. Ruan, D. Xiao, J. C. Beier, On the delayed Ross–Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098–1114. https://doi.org/10.1007/s11538-007-9292-z doi: 10.1007/s11538-007-9292-z
    [6] J. B. Aguilar, J. B. Gutierrez, An epidemiological model of malaria accounting for asymptomatic carriers, Bull. Math. Biol., 82 (2020), 42. https://doi.org/10.1007/s11538-020-00717-y doi: 10.1007/s11538-020-00717-y
    [7] J. Chen, F. K. Wang, Z. X. He, Y. Bai, Progress in the study of epidemiologic characteristics and influencing factors of asymptomatic malaria infection in Africa, Altern. Ther. Health Med., 27 (2021), 52–56.
    [8] P. K. Streatfifield, W. A. Khan, A. Bhuiya, S. M. Hanifi, N. Alam, E. Diboulo, et al., Malaria mortality in Africa and Asia: evidence from indepth health and demographic surveillance model sites, Global Health Action, 7 (2014), 25369. https://doi.org/10.3402/gha.v7.25369 doi: 10.3402/gha.v7.25369
    [9] K. A. Lindblade, L. Steinhardt, A. Samuels, S. Kachur, L. Slutsker, The silent threat: asymptomatic parasitemia and malaria transmission, Expert Rev. Anti-Infect. Ther., 11 (2013), 623–639. https://doi.org/10.1586/eri.13.45 doi: 10.1586/eri.13.45
    [10] J. T. Bousema, L. C. Gouagna, C. J. Drakeley, A. M. Meutstege, B. A. Okech, I. N. Akim, et al., Plasmodium falciparum gametocyte carriage in asymptomatic children in western Kenya, Malar. J., 3 (2004), 18–24. https://doi.org/10.1186/1475-2875-3-18 doi: 10.1186/1475-2875-3-18
    [11] R. Ross, The Prevention of Malaria, 2$^{nd}$ edition, John Murray, London, UK, 1911.
    [12] G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, UK, 1957.
    [13] S. Guo, M. He, J. A. Cui, Global stability of a time-delayed malaria model with standard incidence rate, Acta Math. Appl. Sin. Engl. Ser., 2023 (2023), 1–11. https://doi.org/10.1007/s10255-023-1042-y doi: 10.1007/s10255-023-1042-y
    [14] J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria, Am. Nat., 130 (1987), 811–827. https://doi.org/10.1086/284749 doi: 10.1086/284749
    [15] C. Chiyaka, W. Garira, S. Dube, Transmission model of endemic human malaria in a partially immune population, Math. Comput. Modell., 46 (2007), 806–822. https://doi.org/10.1016/j.mcm.2006.12.010 doi: 10.1016/j.mcm.2006.12.010
    [16] D. Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment, Int. J. Biomath., 11 (2018), 180085. https://doi.org/10.1142/S1793524518500857 doi: 10.1142/S1793524518500857
    [17] H. Wu, Z. Hu, Malaria transmission model with transmission-blocking drugs and a time delay, Math. Probl. Eng., 2021 (2021), 1339086. https://doi.org/10.1155/2021/1339086 doi: 10.1155/2021/1339086
    [18] Y. Zhang, S. Liu, Z. Bai, A periodic malaria model with two delays, Physica A, 541 (2020), 123327. https://doi.org/10.1016/j.physa.2019.123327 doi: 10.1016/j.physa.2019.123327
    [19] J. K. Hale, S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, USA, 1993.
    [20] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, USA, 1993. https://doi.org/10.1039/fd9939500299
    [21] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Modell., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
    [22] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [23] A. Alshorman, X. Wang, M. J. Meyer, L. Rong, Analysis of HIV models with two time delays, J. Biol. Dyn., 11 (2017), 40–64. https://doi.org/10.1080/17513758.2016.1148202 doi: 10.1080/17513758.2016.1148202
    [24] S. Guo, Y. Xue, X. Li, Z. Zheng, A novel analysis approach of uniform persistence for a COVID-19 model with quarantine and standard incidence rate, arXiv preprint, (2022), arXiv: 2205.15560. https://doi.org/10.48550/arXiv.2205.15560
    [25] Y. Yang, Y. Dong, Y. Takeuchi, Global dynamics of a latent HIV infection model with general incidence function and multiple delays, Discrete Contin. Dyn. Syst. - Ser. B, 24 (2019), 783–800. https://doi.org/10.3934/dcdsb.2018207 doi: 10.3934/dcdsb.2018207
    [26] G. Butler, H. I. Freedman, P. Waltman, Uniformly persistent systems, Proc. Am. Math. Soc., 96 (1986), 425–430. https://doi.org/110.1090/S0002-9939-1986-0822433-4 doi: 10.1090/S0002-9939-1986-0822433-4
    [27] S. Guo, W. Ma, Remarks on a variant of Lyapunov-LaSalle theorem, Math. Biosci. Eng., 16 (2019), 1056–1066. https://doi.org/10.3934/mbe.2019050 doi: 10.3934/mbe.2019050
    [28] Y. Bai, X. Wang, S. Guo, Global stability of a mumps transmission model with quarantine measure, Acta Math. Appl. Sin. Engl. Ser., 37 (2021), 665–672. https://doi.org/10.1007/s10255-021-1035-7 doi: 10.1007/s10255-021-1035-7
    [29] S. Guo, Y. Xue, R. Yuan, M. Liu, An improved method of global dynamics: analyzing the COVID-19 model with time delays and exposed infection, Chaos, in press.
    [30] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. https://doi.org/10.1007/BF00173267 doi: 10.1007/BF00173267
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1321) PDF downloads(71) Cited by(2)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog