Research article Special Issues

Effect of graphene on the properties of epoxy in hygrothermal environment by molecular dynamics method

  • Received: 26 February 2023 Revised: 06 April 2023 Accepted: 12 April 2023 Published: 21 April 2023
  • The physical and mechanical properties of graphene-reinforced epoxy (epoxy/graphene) in hygrothermal environment need to be comprehensively understood. This is because it is necessary to predict the durability of epoxy/graphene when epoxy/graphene is used in an aggressive environment with high humidity and high temperature. Based on the molecular dynamics method, the influences of water content (2, 4 and 6%) and temperature (298,333 and 368 K) on the physical and tensile properties of epoxy/graphene were studied in this research. The results showed that after the addition of graphene, the free volume fraction of epoxy and the diffusion coefficient of water molecules in the epoxy decreased, and the density, tensile strength and deformation performance of epoxy increased. In the hygrothermal environment, the tensile strength degradation rate of epoxy/graphene was lower than that of pure epoxy. The failure mechanism and mechanical response of epoxy/graphene during the tensile process in the nanoscale were revealed. The research results provide a reference for the design and performance optimization of epoxy/graphene composites in a hygrothermal environment.

    Citation: Xiuli Zhang, Guangming He, Hui Yao, Xuanxi Wang, Guoru Ma, Junliang Li, Zulong Yu, Guozhong Lu, Zhifei Gao. Effect of graphene on the properties of epoxy in hygrothermal environment by molecular dynamics method[J]. Electronic Research Archive, 2023, 31(6): 3510-3533. doi: 10.3934/era.2023178

    Related Papers:

  • The physical and mechanical properties of graphene-reinforced epoxy (epoxy/graphene) in hygrothermal environment need to be comprehensively understood. This is because it is necessary to predict the durability of epoxy/graphene when epoxy/graphene is used in an aggressive environment with high humidity and high temperature. Based on the molecular dynamics method, the influences of water content (2, 4 and 6%) and temperature (298,333 and 368 K) on the physical and tensile properties of epoxy/graphene were studied in this research. The results showed that after the addition of graphene, the free volume fraction of epoxy and the diffusion coefficient of water molecules in the epoxy decreased, and the density, tensile strength and deformation performance of epoxy increased. In the hygrothermal environment, the tensile strength degradation rate of epoxy/graphene was lower than that of pure epoxy. The failure mechanism and mechanical response of epoxy/graphene during the tensile process in the nanoscale were revealed. The research results provide a reference for the design and performance optimization of epoxy/graphene composites in a hygrothermal environment.



    加载中


    [1] D. Xin, Q. Han, A molecular dynamics investigation on the compression of cross-linked epoxy resins, Mol. Simul., 41 (2015), 1509–1514. https://doi.org/10.1080/08927022.2014.994623 doi: 10.1080/08927022.2014.994623
    [2] L. Shen, L. Zou, M. Ding, T. Zhao, L. Zhang, Q. Li, Molecular dynamics simulation on dielectric constant and thermal conductivity of crosslink epoxy/functionalized graphene nano-composites, in IOP Conference Series: Materials Science and Engineering, 761 (2020), 012009. https://doi.org/10.1088/1757-899X/761/1/012009
    [3] W. Sun, S. Yu, S. Gao, X. Yao, H. Xu, B. Qian, et al., Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings, J. Chin. Soc. Corros. Prot., 41 (2021), 411–416. https://doi.org/10.11902/1005.4537.2020.227 doi: 10.11902/1005.4537.2020.227
    [4] Y. Li, S. Wang, Q. Wang, A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene, Carbon, 111 (2017), 538–545. http://doi.org/10.1016/j.carbon.2016.10.039 doi: 10.1016/j.carbon.2016.10.039
    [5] Q. Xie, K. Fu, S. Liang, B. Liu, L. Lu, X. Yang, et al., Micro-structure and thermomechanical pproperties of crosslinked epoxy composite modified by nano-SiO2: A molecular dynamics simulation, Polymers (Basel), 10 (2018), 801. https://doi.org/10.3390/polym10070801 doi: 10.3390/polym10070801
    [6] Y. Yang, G. Xian, H. Li, L. Sui, Thermal aging of an anhydride-cured epoxy resin, Polym. Degrad. Stab., 118 (2015), 111–119. https://doi.org/10.1016/j.polymdegradstab.2015.04.017 doi: 10.1016/j.polymdegradstab.2015.04.017
    [7] D. Li, Evolution of the Properties of an Epoxy Resin Submitted to Water and Alkaline Immersion and the molecular Dynamic Simulation, Master's thesis, Harbin Institute of Technology in Harbin, 2015.
    [8] Y. Xiao, G. Xian, Effects of moisture ingress on the bond between carbon fiber and epoxy resin investigated with molecular dynamics simulation, Polym. Compos., 39 (2018), E2074–E2083. https://doi.org/10.1002/pc.24459 doi: 10.1002/pc.24459
    [9] F. Zhao, H. Ba, X. Gao, The durability of epoxy resin coating, J. Wuhan Univ. Technol. Mater. Sci. Ed., 23 (2008), 242–244. https://doi.org/10.1007/s11595-006-2242-z doi: 10.1007/s11595-006-2242-z
    [10] J. Arias, M. M. Escobar, C. Bernal, A. Vázquez, Aging in water and in an alkaline medium of unsaturated polyester and epoxy resins: experimental study and modeling, Adv. Polym. Technol., 37 (2018), 450–460. https://doi.org/10.1002/adv.21684 doi: 10.1002/adv.21684
    [11] A. Uthaman, G. Xian, S. Thomas, Y. Wang, Q. Zheng, X. Liu, Durability of an epoxy resin and its carbon fiber-reinforced polymer composite upon immersion in water, acidic, and alkaline solutions, Polymers (Basel), 12 (2020), 614. https://doi.org/10.3390/polym12030614 doi: 10.3390/polym12030614
    [12] B. Wang, D. Li, G. Xian, C. Li, Effect of Immersion in water or alkali solution on the structures and properties of epoxy resin, Polymers (Basel), 13 (2021), 1902. https://doi.org/10.3390/polym13121902 doi: 10.3390/polym13121902
    [13] F. Jeyranpour, G. Alahyarizadeh, H. Minuchehr, The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation-A comparative study, Polymer, 88 (2016), 9–18. https://doi.org/10.1016/j.polymer.2016.02.018 doi: 10.1016/j.polymer.2016.02.018
    [14] Y. Zhang, J. Ma, C. Wu, X. Han, W. Zhang, Effects of moisture ingress on the mesoscale mechanical properties of epoxy adhesives under elevated temperature, Polym. Test., 94 (2021), 107049. https://doi.org/10.1016/j.polymertesting.2020.107049 doi: 10.1016/j.polymertesting.2020.107049
    [15] H. Chai, X. Wang, W. U. Rehman, X. Yang, T. Meng, Study on water absorption and mechanical properties of CNF-Ti reinforced epoxy resin composites, Plast., Rubber Compos., 52 (2021), 47–58. https://doi.org/10.1080/14658011.2021.2017127 doi: 10.1080/14658011.2021.2017127
    [16] P. Penjumras, R. A. Rahman, R. A. Talib, K. Abdan, Mechanical properties and water absorption behaviour of durian rind cellulose reinforced poly (lactic acid) biocomposites, Int. J. Adv. Sci. Eng. Inf. Technol., 5 (2015), 343–349. https://doi.org/10.18517/ijaseit.5.5.574 doi: 10.18517/ijaseit.5.5.574
    [17] A. King, G. Johnson, D. Engelberg, W. Ludwig, L. Marrow, Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal, Science, 321 (2008), 382–385. https://doi.org/10.1126/science.abq1274 doi: 10.1126/science.abq1274
    [18] X. Sun, H. Sun, H. Li, H. Peng, Developing polymer composite materials: carbon nanotubes or graphene?, Adv. Mater., 25 (2013), 5153–5176. https://doi.org/10.1002/adma.201301926 doi: 10.1002/adma.201301926
    [19] L. C. O. Silva, G. G. Silva, P. M. Ajayan, B. G. Soares, Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis, J. Mater. Sci., 50 (2015), 6407–6419. https://doi.org/10.1007/s10853-015-9193-8 doi: 10.1007/s10853-015-9193-8
    [20] W. Hou, Y. Gao, J. Wang, D. J. Blackwood, S. Teo, Recent advances and future perspectives for graphene oxide reinforced epoxy resins, Mater. Today Commun., 23 (2020), 100883. https://doi.org/10.1016/j.mtcomm.2019.100883 doi: 10.1016/j.mtcomm.2019.100883
    [21] Y. Ni, L. Chen, K. Teng, J. Shi, X. Qian, Z. Xu, et al., Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton, ACS Appl. Mater. Interfaces, 7 (2015), 11583–11591. https://doi.org/10.1021/acsami.5b02552 doi: 10.1021/acsami.5b02552
    [22] T. Hu, D. Zhao, C. Cheng, S. Meng, Z. Ding, L. Wu, Preparation and mechanical properties of graphene oxide reinforced epoxy composites, J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 45 (2018), 29–33. https://doi.org/10.13543/j.bhxbzr.2018.06.005 doi: 10.13543/j.bhxbzr.2018.06.005
    [23] W. Xiao, Y. Liu, S. Guo, Composites of graphene oxide and epoxy resin assuming a uniform 3D graphene oxide network structure, RSC Adv., 6 (2016), 8694–8698. https://doi.org/10.1039/c6ra16335a doi: 10.1039/c6ra16335a
    [24] H. Yao, S. A. Hawkins, H. Sue, Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos. Sci. Technol., 146 (2017), 161–168. https://doi.org/10.1016/j.compscitech.2017.04.026 doi: 10.1016/j.compscitech.2017.04.026
    [25] S. A. Bansal, A. P. Singh, A. Kumar, S. Kumar, N. Kumar, J. K. Goswamy, Improved mechanical performance of bisphenol-A graphene-oxide nano-composites, J. Compos. Mater., 52 (2018), 2179–2188. https://doi.org/10.1177/0021998317741952 doi: 10.1177/0021998317741952
    [26] B. Hu, Y. Cong, B. Zhang, L. Zhang, Y. Shen, H. Huang, Enhancement of thermal and mechanical performances of epoxy nanocomposite materials based on graphene oxide grafted by liquid crystalline monomer with Schiff base, J. Mater. Sci., 55 (2020), 3712–3727. https://doi.org/10.1007/s10853-019-04273-2 doi: 10.1007/s10853-019-04273-2
    [27] Y. Zhang, D. Zhang, X. Wei, S. Zhong, J. Wang, Enhanced tribological properties of polymer composite coating containing graphene at room and elevated temperatures, Coatings, 8 (2018), 91. https://doi.org/10.3390/coatings8030091 doi: 10.3390/coatings8030091
    [28] A. Wolk, M. Rosenthal, J. Weiss, M. Voigt, J. Wesendahl, M. Hartmann, et al., Graphene oxide as flexibilizer for epoxy amine resins, Prog. Org. Coat., 122 (2018), 280–289. https://doi.org/10.1016/j.porgcoat.2018.05.028 doi: 10.1016/j.porgcoat.2018.05.028
    [29] S. C. Her, L. Y. Chen, Fabrication and characterization of graphene/epoxy nanocomposites, Mater. Sci., 25 (2019), 433–440. https://doi.org/10.5755/j01.ms.25.4.19462 doi: 10.5755/j01.ms.25.4.19462
    [30] P. Bian, W. Verestek, S. Yan, X. Xu, H. Qing, S. Schmauder, A multiscale modeling on fracture and strength of graphene platelets reinforced epoxy, Eng. Fract. Mech., (2020), 107197. https://doi.org/10.1016/j.engfracmech.2020.107197 doi: 10.1016/j.engfracmech.2020.107197
    [31] P. Bian, S. Schmauder, H. Qing, Strength and damage of nanoplatelets reinforced polymer: A 3D finite element modeling and simulation, Compos. Struct., 245 (2020), 112337. https://doi.org/10.1016/j.compstruct.2020.112337 doi: 10.1016/j.compstruct.2020.112337
    [32] A. Yadav, A. Kumar, P. K. Singh, K. Sharma, Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation, Integr. Ferroelectr., 186 (2018), 106–114. https://doi.org/10.1080/10584587.2017.1370331 doi: 10.1080/10584587.2017.1370331
    [33] A. Salehi, S. Rash-Ahmadi, Effect of adsorption, hardener, and temperature on mechanical properties of epoxy nanocomposites with functionalized graphene: A molecular dynamics study, J. Mol. Graphics Modell., 117 (2022), 108311. https://doi.org/10.1016/j.jmgm.2022.108311 doi: 10.1016/j.jmgm.2022.108311
    [34] O. Starkova, S. Gaidukovs, O. Platnieks, A. Barkane, K. Garkusina, E. Palitis, et al., Water absorption and hydrothermal ageing of epoxy adhesives reinforced with amino-functionalized graphene oxide nanoparticles. Polym. Degrad. Stab., 191 (2021), 109670. https://doi.org/10.1016/j.polymdegradstab.2021.109670 doi: 10.1016/j.polymdegradstab.2021.109670
    [35] S. Prolongo, A. Jiménez-Suárez, R. Moriche, A. Ureña, Influence of thickness and lateral size of graphene nanoplatelets on water uptake in epoxy/graphene nanocomposites, Appl. Sci., 8 (2018), 1550. https://doi.org/10.3390/app8091550 doi: 10.3390/app8091550
    [36] W. Li, L. Zhang, M. Zhang, S. Chen, Structures of graphene-reinforced epoxy coatings and the dynamic diffusion of guest water: a molecular dynamics study, Ind. Eng. Chem. Res., 59 (2020), 20749–20756. https://doi.org/10.1021/acs.iecr.0c04673 doi: 10.1021/acs.iecr.0c04673
    [37] L. Zhu, C. Feng, Y. Cao, Corrosion behavior of epoxy composite coatings reinforced with reduced graphene oxide nanosheets in the high salinity environments, Appl. Surf. Sci., 493 (2019), 889–896. https://doi.org/10.1016/j.apsusc.2019.06.271 doi: 10.1016/j.apsusc.2019.06.271
    [38] L. Yao, J. Zhao, Mechanism study of doped graphene on improving mechanical properties and corrosion resistance of epoxy resin, J. At. Mol. Phys., 38 (2021), 131–135. https://doi.org/10.19855/j.1000-0364.2021.016003 doi: 10.19855/j.1000-0364.2021.016003
    [39] P. Bian, H. Qing, A phase-field based finite element method for modeling graphene flake reinforced composites, Mech. Adv. Mater. Struct., (2022), 1–16. https://doi.org/10.1080/15376494.2022.2048146 doi: 10.1080/15376494.2022.2048146
    [40] P. L. Bian, H. Qing, S. Schmauder, A novel phase-field based cohesive zone model for modeling interfacial failure in composites, Int. J. Numer. Methods Eng., (2021), 1–24. https://doi.org/10.1002/nme.6821 doi: 10.1002/nme.6821
    [41] W. Li, W. Chai, L. Zhang, Y. Guo, W. Wang, S. Chen, Atomic insight into the influences of moisture ingress on the structures and dynamics of graphene-epoxy interfaces, Compos. Sci. Technol., 219 (2022), 109222. https://doi.org/10.1016/j.compscitech.2021.109222 doi: 10.1016/j.compscitech.2021.109222
    [42] C. Sheng, G. Wu, X. Sun, S. Liu, Molecular dynamics investigation of the thermo-mechanical properties of the moisture invaded and cross-linked epoxy system, Polymers (Basel), 14 (2022), 103, https://doi.org/10.3390/polym14010103 doi: 10.3390/polym14010103
    [43] J. Fan, P. Li, Z. Wang, J. Yang, The temperature-dependent properties of epoxy-functionalized graphene oxide/epoxy nanocomposites: insights from simulation and experiment, J. Mater. Sci., 57 (2022), 15298–15313, https://doi.org/10.1007/s10853-022-07575-0 doi: 10.1007/s10853-022-07575-0
    [44] K. Fu, Q. Xie, F. LÜ, Q. Duan, X. Wang, Q. Zhu, et al., Molecular dynamics simulation and experimental studies on the thermomechanical properties of epoxy resin with different anhydride curing agents, Polymers (Basel), 11 (2019), 975, https://doi:10.3390/polym11060975 doi: 10.3390/polym11060975
    [45] B. S. Sindu, S. Sasmal, Evaluation of mechanical characteristics of nano modified epoxy based polymers using molecular dynamics, Comput. Mater. Sci., 96 (2015), 146–158, http://dx.doi.org/10.1016/j.commatsci.2014.09.003 doi: 10.1016/j.commatsci.2014.09.003
    [46] Q. Yang, X. Yang, X. Li, L. Shi, G. Sui, The curing and thermal transition behavior of epoxy resin: a molecular simulation and experimental study, RSC Adv., 3 (2013), 7452–7459. https://doi.org/10.1039/c3ra40699g doi: 10.1039/c3ra40699g
    [47] C. Sheng, G. Wu, X. Sun, S. Liu, Molecular dynamics investigation of the thermo-mechanical properties of the moisture invaded and cross-linked epoxy system, Polymers (Basel), 14 (2022), 103. https://doi.org/10.3390/polym14010103 doi: 10.3390/polym14010103
    [48] S. Ma, P. Chen, J. Xu, X. Xiong, Molecular dynamics simulations of key physical properties and microstructure of epoxy resin cured with different curing agents, J. Mater. Sci., 57 (2022), 1123–1133. https://doi.org/10.1007/s10853-021-06799-w doi: 10.1007/s10853-021-06799-w
    [49] Y. Jin, X. Han, P. Hu, Modelling and Experimental Study on Diffusion Characteristics of Epoxy Adhesive Immersed in Aqueous Environment, The 26th Annual Conference of Beijing Adhesion Society, Beijing, 2017.
    [50] K. Li, Molecular Dynamic Simulations of Crosslinked Epoxy Resin and Properties of Nano-Composites Containing Phenyl POSS, Ph.D thesis, Beijing University of Chemical Technology, Beijing, 2017.
    [51] Y. Liu, Research on the Aging Properties of Epoxy Resin in Hygrothermal Environment, Master's thesis, Chongqing University in Chongqing, 2018
    [52] R. Cai, J. Zhao, N. Lv, A. Fu, C. Yin, C. Song, et al., Curing and molecular dynamics simulation of MXene/Phenolic epoxy composites with different amine curing agent systems, Nanomaterials, 12 (2022), 2249. https://doi.org/10.3390/nano12132249 doi: 10.3390/nano12132249
    [53] Y. Xie, H. Lei, H. Huang, H. Pan, S. Zhao, Y. Liu, et al., Molecular simulation on hygrothermal ageing process of epoxy resin, Insul. Mater., 52 (2019), 70–77. https://doi.org/10.16790/j.cnki.1009-9239.im.2019.09.013 doi: 10.16790/j.cnki.1009-9239.im.2019.09.013
    [54] H. Yan, Z. Wang, F. Sun, R. Gao, Y. Fu, Molecular dynamics simulation of crosslinked epoxy resin tensile properties, Eng. Plast. Appl., 50 (2022), 113–117, https://doi.org/10.3969/j.issn.1001-3539.2022.12.019 doi: 10.3969/j.issn.1001-3539.2022.12.019
    [55] S. Yang, J. Qu, Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations, Polymer, 53 (2012), 4806–4817, http://dx.doi.org/10.1016/j.polymer.2012.08.045 doi: 10.1016/j.polymer.2012.08.045
    [56] C. Li, A. Strachan, Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA, Polymer, 52 (2011), 2920–2928, https://doi:10.1016/j.polymer.2011.04.041 doi: 10.1016/j.polymer.2011.04.041
    [57] M. Y. Fard, Y. Liu, A. Chattopadhyay, Characterization of epoxy resin including strain rate effects using digital image correlation system, J. Aerosp. Eng., 25 (2012), 308–319. http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000127 doi: 10.1061/(ASCE)AS.1943-5525.00001
    [58] D. Xin, Mechanical Properties and the Interface Failure Mechanism of Epoxy Resin under Hygrothermal Condition, Ph.D thesis, South China University of Technology, Guangzhou, 2013.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1309) PDF downloads(53) Cited by(1)

Article outline

Figures and Tables

Figures(26)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog