Research article Special Issues

Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields

  • Received: 19 February 2024 Revised: 07 May 2024 Accepted: 16 May 2024 Published: 22 May 2024
  • MSC : 60E05, 62F10, 62H12

  • The proposed article introduces a novel three-parameter lifetime model called an exponentiated extended extreme-value (EEEV) distribution model. The EEEV distribution is characterized by increasing or bathtub-shaped hazard rates, which can be advantageous in the context of reliability. Various statistical properties of the distribution have been derived. The article discusses four estimation methods, namely, maximum likelihood, least squares, weighted least squares, and Cramér-von Mises, for EEEV distribution parameter estimation. A simulation study was carried out to examine the performance of the new model estimators based on the four estimation methods by using the average bias, mean squared errors, relative absolute biases, and root mean square error. The flexibility and significance of the EEEV distribution are demonstrated by analyzing three real-world datasets from the fields of medicine and engineering. The EEEV distribution exhibits high adaptability and outperforms several well-known statistical models in terms of performance.

    Citation: M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr. Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields[J]. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857

    Related Papers:

  • The proposed article introduces a novel three-parameter lifetime model called an exponentiated extended extreme-value (EEEV) distribution model. The EEEV distribution is characterized by increasing or bathtub-shaped hazard rates, which can be advantageous in the context of reliability. Various statistical properties of the distribution have been derived. The article discusses four estimation methods, namely, maximum likelihood, least squares, weighted least squares, and Cramér-von Mises, for EEEV distribution parameter estimation. A simulation study was carried out to examine the performance of the new model estimators based on the four estimation methods by using the average bias, mean squared errors, relative absolute biases, and root mean square error. The flexibility and significance of the EEEV distribution are demonstrated by analyzing three real-world datasets from the fields of medicine and engineering. The EEEV distribution exhibits high adaptability and outperforms several well-known statistical models in terms of performance.



    加载中


    [1] C. D. Lai, M. Xie, D. N. P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab., 52 (2003), 33–37. https://doi.org/10.1109/TR.2002.805788 doi: 10.1109/TR.2002.805788
    [2] A. M. Sarhan, J. Apaloo, Exponentiated modified Weibull extension distribution, Reliab. Eng. Syst. Saf., 112 (2013), 137–144. https://doi.org/10.1016/j.ress.2012.10.013 doi: 10.1016/j.ress.2012.10.013
    [3] B. He, W. Cui, X. Du, An additive modified Weibull distribution, Reliab. Eng. Syst. Saf., 145 (2016), 28–37. https://doi.org/10.1016/j.ress.2015.08.010 doi: 10.1016/j.ress.2015.08.010
    [4] A. A. Ahmad, M. G. M. Ghazal, Exponentiated additive Weibull distribution, Reliab. Eng. Syst. Saf., 193 (2020), 106663. https://doi.org/10.1016/j.ress.2019.106663 doi: 10.1016/j.ress.2019.106663
    [5] E. A. Hussein, H. M. Aljohani, A. Z. Afify, The extended Weibull–Fréchet distribution: Properties, inference, and applications in medicine and engineering, AIMS Mathematics, 7 (2022), 225–246. https://doi.org/10.3934/math.2022014 doi: 10.3934/math.2022014
    [6] M. G. M. Ghazal, H. M. M. Radwan, A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data, Math. Biosci. Eng., 19 (2022), 13193–13213. https://doi.org/10.3934/mbe.2022617 doi: 10.3934/mbe.2022617
    [7] L. C. Méndez-González, L. A. Rodríguez-Picón, I. J. C. Pérez-Olguin, L. A. Pérez- Domínguez, D. L. Cruz, The alpha power Weibull transformation distribution applied to describe the behavior of electronic devices under voltage stress profile, Qual. Technol. Quant. Manag., 19 (2022), 692–721. https://doi.org/10.1080/16843703.2022.2071526 doi: 10.1080/16843703.2022.2071526
    [8] M. G. M. Ghazal, A new extension of the modified Weibull distribution with applications for engineering data, Probab. Eng. Mech., 74 (2023), 103523. https://doi.org/10.1016/j.probengmech.2023.103523 doi: 10.1016/j.probengmech.2023.103523
    [9] N. Alotaibi, A. S. Al-Moisheer, I. Elbatal, S. A. Alyami, A. M. Gemeay, E. M. Almetwally, Bivariate step-stress accelerated life test for a new three-parameter model under progressive censored schemes with application in medical, AIMS Mathematics, 9 (2024), 3521–3558. https://doi.org/10.3934/math.2024173 doi: 10.3934/math.2024173
    [10] A. Xu, S. Zhou, Y. Tang, A unified model for system reliability evaluation under dynamic operating conditions, IEEE Trans. Reliab., 70 (2021), 65–72. https://doi.org/10.1109/TR.2019.2948173 doi: 10.1109/TR.2019.2948173
    [11] W. Wang, Z. Cui, R. Chen, Y. Wang, X. Zhao, Regression analysis of clustered panel count data with additive mean models, Stat. Papers, 70 (2023). https://doi.org/10.1007/s00362-023-01511-3
    [12] A. Xu, B. Wang, D. Zhu, J. Pang, X. Lian, Bayesian reliability assessment of permanent magnet brake under small sample size, IEEE Trans. Reliab., 2024. https://doi.org/10.1109/TR.2024.3381072
    [13] J. F. Lawless, Statistical models and methods for lifetime data, 2 Eds., Hoboken: John Wiley & Sons, 2002.
    [14] W. Q. Meeker, L. A. Escobar, F. G. Pascual, Statistical methods for reliability data, 2 Eds., New York: Wiley, 2021.
    [15] Y. S. Cho, S. B. Kang, J. T. Han, The exponentiated extreme value distribution, J. Korean Data Inf. Sci. Soc., 20 (2009), 719–731.
    [16] J. M. F. Carrasco, E. M. M. Ortega, G. M. Cordeiro, A generalized modified Weibull distribution for lifetime modeling, Comput. Stat. Data Anal., 53 (2008), 450–462. https://doi.org/10.1016/j.csda.2008.08.023 doi: 10.1016/j.csda.2008.08.023
    [17] M. A. W. Mahmoud, M. G. M. Ghazal, H. M. M. Radwan, Modified generalized linear exponential distribution: Properties and applications, Stat., Optim. Inf. Comput., 12 (2024), 231–255. https://doi.org/10.19139/soic-2310-5070-1103 doi: 10.19139/soic-2310-5070-1103
    [18] G. Casella, R. L. Berger, Statistical Inference, Pacific Grove: Duxbury, 2002.
    [19] J. Shao, Ordinary and weighted least-squares estimators, Can. J. Stat., 18 (1990), 327–336. https://doi.org/10.2307/3315839 doi: 10.2307/3315839
    [20] J. J. Swain, S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions in johnson's translation system, J. Stat. Comput. Simul., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [21] A. Luceo, Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators, Comput. Stat. Data Anal., 51 (2006), 904–917. https://doi.org/10.1016/j.csda.2005.09.011 doi: 10.1016/j.csda.2005.09.011
    [22] J. W. Boag, Maximum likelihood estimates of the proportion of patients cured by cancer therapy, J. R. Stat. Soc. Ser. B, 11 (1949), 15–44. https://doi.org/10.1111/j.2517-6161.1949.tb00020.x doi: 10.1111/j.2517-6161.1949.tb00020.x
    [23] M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106–108. https://doi.org/10.1109/TR.1987.5222310 doi: 10.1109/TR.1987.5222310
    [24] D. P. Murthy, M. Xie, R. Jiang, Weibull Models, New York: John Wiley & Sons, 2004.
    [25] W. A. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), 293–297. https://doi.org/10.1115/1.4010337 doi: 10.1115/1.4010337
    [26] T. Dimitrakopoulou, K. Adamidis, S. Loukas, A lifetime distribution with an upside-down bathtub-shaped hazard function, IEEE Trans. Reliab., 56 (2007), 308–311. https://doi.org/10.1109/TR.2007.895304 doi: 10.1109/TR.2007.895304
    [27] A. J. Lemonte, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Stat. Data Anal., 62 (2013), 149–170. https://doi.org/10.1016/j.csda.2013.01.011 doi: 10.1016/j.csda.2013.01.011
    [28] M. Nassar, Ahmed Z. Afify, S. Dey, D. Kumar, A new extension of Weibull distribution: Properties and different methods of estimation, J. Comput. Appl. Math., 336 (2018), 439–457. https://doi.org/10.1016/j.cam.2017.12.001 doi: 10.1016/j.cam.2017.12.001
    [29] F. A. Peña-Ramírez, R. R. Guerra, D. R. Canterle, G. M. Cordeiro, The logistic nadarajah-haghighi distribution and its associated regression model for reliability applications, Reliab. Eng. Syst. Saf., 204 (2020), 107196. https://doi.org/10.1016/j.ress.2020.107196 doi: 10.1016/j.ress.2020.107196
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(695) PDF downloads(70) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog