Research article

On the construction of constacyclically permutable codes from constacyclic codes

  • Received: 28 February 2024 Revised: 25 March 2024 Accepted: 29 March 2024 Published: 03 April 2024
  • MSC : 94B15, 94B60

  • In this paper, we propose a way to partition any constacyclic code over a finite field in its equivalence classes according to the algebraic structure of the code. Such a method gives the generalization of cyclically permutable codes (CPCs), which are called constacyclically permutable codes (CCPCs), and it is useful to derive a CCPC from a given constacyclic code. Moreover, we present an enumerative formula for the code size of such a CCPC, with all of the terms being positive integers, and we provide an algebraic method to produce such a CCPC.

    Citation: Guanghui Zhang, Shuhua Liang. On the construction of constacyclically permutable codes from constacyclic codes[J]. AIMS Mathematics, 2024, 9(5): 12852-12869. doi: 10.3934/math.2024628

    Related Papers:

  • In this paper, we propose a way to partition any constacyclic code over a finite field in its equivalence classes according to the algebraic structure of the code. Such a method gives the generalization of cyclically permutable codes (CPCs), which are called constacyclically permutable codes (CCPCs), and it is useful to derive a CCPC from a given constacyclic code. Moreover, we present an enumerative formula for the code size of such a CCPC, with all of the terms being positive integers, and we provide an algebraic method to produce such a CCPC.



    加载中


    [1] E. N. Gilbert, Cyclically permutable error-correcting codes, IEEE T. Inform. Theory, 9 (1963), 175–182. https://doi.org/10.1109/TIT.1963.1057840 doi: 10.1109/TIT.1963.1057840
    [2] L. Györfi, I. Vajda, Constructions of protocol sequence for multiple access collision channel without feedback, IEEE T. Inform. Theory, 39 (1993), 1762–1765. https://doi.org/10.1109/18.259673 doi: 10.1109/18.259673
    [3] Q. A. Nguyen, L. Györfi, J. L. Massey, Constructions of binary constant-weight cyclic codes and cyclically permutable codes, IEEE T. Inform. Theory, 38 (1992), 940–949. https://doi.org/10.1109/18.135636 doi: 10.1109/18.135636
    [4] S. Katzenbeisser, F. A. P. Petitcolas, Information hiding techniques for steganography and digital watermarking, Norwood, MA: Artech House, 2000.
    [5] S. Sriram, S. Hosur, Cyclically permutable codes for rapid acquisition in DS-CDMA systems with asynchronous base stations, IEEE J. Sel. Area. Comm., 19 (2001), 83–94. https://doi.org/10.1109/49.909611 doi: 10.1109/49.909611
    [6] B. Chen, L. Lin, S. Ling, H. Liu, Three new classes of optimal frequency-hopping sequence sets, Design. Code. Cryptogr., 83 (2017), 219–232. https://doi.org/10.1007/s10623-016-0220-9 doi: 10.1007/s10623-016-0220-9
    [7] C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo, M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE T. Inform. Theory, 55 (2009), 3297–3304. https://doi.org/10.1109/TIT.2009.2021366 doi: 10.1109/TIT.2009.2021366
    [8] H. Y. Song, I. S. Reed, S. W. Golomb, On the nonperiodic cyclic equivalence classes of Reed-Solomon codes, IEEE T. Inform. Theory, 39 (1993), 1431–1434. https://doi.org/10.1109/18.243465 doi: 10.1109/18.243465
    [9] S. B. Wicker, V. K. Bhargava, Reed-Solomon codes and their applications, IEEE Press, New York, 1994.
    [10] S. Bitan, T. Etzion, Constructions for optimal binary constant-weight cyclically permutable codes and difference families, IEEE T. Inform. Theory, 41 (1995), 77–87. https://doi.org/10.1109/18.370117 doi: 10.1109/18.370117
    [11] Q. A. Nguyen, L. Györfi, J. L. Massey, Constructions of binary constant-weight cyclic codes and cyclically permutable codes, IEEE T. Inform. Theory, 38 (1992), 940–949. https://doi.org/10.1109/18.135636 doi: 10.1109/18.135636
    [12] J. S. Lemos-Neto, V. C. da Rocha Jr., Cyclically permutable codes specified by roots of generator polynomial, Electron. Lett., 50 (2014), 1202–1204. https://doi.org/10.1049/el.2014.0296 doi: 10.1049/el.2014.0296
    [13] D. E. Maracle, C. T. Wolverton, Generating cyclically permutable codes, IEEE T. Inform. Theory, 20 (1974), 554–555. https://doi.org/10.1109/TIT.1974.1055243 doi: 10.1109/TIT.1974.1055243
    [14] D. H. Smith, S. Perkins, Cyclically permutable representations of cyclic codes, Discrete Appl. Math., 156, 76–81, 2008. https://doi.org/10.1016/j.dam.2007.08.038 doi: 10.1016/j.dam.2007.08.038
    [15] F. Fu, S. Shen, On the nonperiodic cyclic equivalence classes of Hamming codes and BCH codes, J. Stat. Plan. Infer., 140 (2001), 205–209. https://doi.org/10.1016/S0378-3758(00)00253-6 doi: 10.1016/S0378-3758(00)00253-6
    [16] S. E. Tavares, P. E. Allard, S. G. S. Shiva, On decomposition of cyclic codes into cyclic classes, Inf. Control, 18 (1971), 342–354. https://doi.org/10.1016/S0019-9958(71)90446-3 doi: 10.1016/S0019-9958(71)90446-3
    [17] P. E. Allard, S. G. S. Shiva, S. E. Tavares, A note on the decomposition of cyclic codes into cyclic classes, Inf. Control, 22 (1973), 100–106. https://doi.org/10.1016/S0019-9958(73)90518-4 doi: 10.1016/S0019-9958(73)90518-4
    [18] S. Xia, F. Fu, Nonperiodic cyclic equivalence classes of cyclic codes and algebraic constructions of cyclically permutable codes, Proc. 12th Int. Symp. Applied Algebra, Algebraic Algorithms, Error-Correcting Codes, 1997,341–352. https://doi.org/10.1007/3-540-63163-1_27
    [19] M. Kuribayashi, H. Tanaka, How to generate cyclically permutable codes from cyclic codes, IEEE T. Inform. Theory, 52 (2006), 4660–4663. https://doi.org/10.1109/TIT.2006.881834 doi: 10.1109/TIT.2006.881834
    [20] T. Y. Yang, H. Chen, K. C. Chung, Generation of cyclically permutable codes by Galois field Fourier transform, Int. Conf. on Ubiquitous and Future Networks (ICUFN 2016), 2016,322–325. https://doi.org/10.1109/ICUFN.2016.7537041
    [21] K. P. Cho, C. L. Lin, H. Chen, T. Y. Yang, Construction of cyclically permutable codes from prime length cyclic codes, 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland, New Zealand, 2020, 1448–1452.
    [22] G. T. Bastos, J. S. de Lemos-Neto, On the cyclic order distribution and partitioning of linear cyclic codes, São Paulo J. Math. Sci., 15 (2021), 404–418. https://doi.org/10.1007/s40863-020-00197-x doi: 10.1007/s40863-020-00197-x
    [23] W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511807077
    [24] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, North-Holland Publishing Company, 1997.
    [25] B. Chen, H. Liu, G. Zhang, Some minimal cyclic codes over finite fields, Discrete Math., 331 (2014), 142–150. https://doi.org/10.1016/j.disc.2014.05.007 doi: 10.1016/j.disc.2014.05.007
    [26] S. Roman, Coding and information theory, Springer-Verlag, 1992.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(684) PDF downloads(79) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog