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1. Introduction

Cyclically permutable codes (CPCs), originally introduced by Gilbert in the early 1960s [1], make
up a binary block code of code length n such that each codeword has a cyclic order n and the
codewords are cyclically distinct. CPCs have many applications in communication networks, for
example, as protocol sequences [2,3], and in watermarking systems [4]. Additionally, non-binary CPCs
have applications in direct sequence code division multiple access systems with asynchronous base
stations [5], as well as in the construction of frequency-hopping sequence sets [6–9]. Therefore, they
are the focus of great theoretical interest and have practical significance in the study and exploration of
q-ary CPCs [5, 6, 10–14].

Cyclic codes are considered important in theoretical studies because they posses a very rich
mathematical structure. So, it seems possible to provide a useful framework to generate CPCs by
choosing the codewords that are cyclically distinct and have maximal cyclic order. More specifically,
one has an equivalence relationship for any cyclic code C: Two codewords of C are said to be equivalent
if one can be obtained from the other by applying the cyclic shift a certain number of times. The
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equivalence class whose elements have full cyclic order is called a nonperiodic cyclic equivalence
class (see [15] or [8]). Picking up exactly one member from each of the nonperiodic cyclic equivalence
classes of C yields a CPC, which is denoted by C′. Note that C′ is certainly not unique by its very
definition, and that C′ is a CPC that is derived from C with the largest possible code size. There are
two basic questions that are attractive for mathematical investigations and practical applications: Q1:
how to determine the exact value of |C′| for a given arbitrary cyclic code C where |C′| denotes the size
of C′; Q2: how to find a general construction scheme that produces C′ for an arbitrary cyclic code C.

Making use of a combinatorial technique known as the Möbius inversion formula, a group of
authors, first in [16] and consequently in [17], found enumerative formulas for the value of |C′|, where
C is a binary simple-root cyclic code. Song et al. [8] also utilized the Möbius function to obtain an
enumerative formula for the size of C′, where C is a Reed-Solomon (RS) code. Combining the Möbius
inversion formula with some elementary properties of cyclic codes, Xia and Fu [18] determined the
value of |C′|, where C is a q-ary simple-root cyclic code.

Compared with Q1, it seems that the method for deriving CPCs from a general cyclic code is still
a challenging problem, even for the binary case. Maracle and Wolverton [13] provided an efficient
algorithm to generate cyclically inequivalent subsets. In [18], Xia and Fu presented several algebraic
constructions of subcodes of C′, where the codes C are particular classes of cyclic codes. Here, by
using the check polynomial approach, Xia and Fu obtained subcodes of C′ from special classes of
cyclic codes C, all of which have code sizes that are strictly less than |C′|. Kuribayashi and Tanaka [19]
first provided an efficient and systematic method to construct a C′ from a binary cyclic code C when
the code length n is a Mersenne prime, i.e., n is a prime number in the form 2m − 1 for some m.
Lemos-Neto and da Rocha [12] gave a necessary and sufficient condition on the generator polynomial
of a cyclic code C under which any nonzero codeword of C has full cyclic order; further, in the same
paper [12], the authors continued to provide an effective method to find CPCs from C, where C is a
cyclic code of length n = qm−1. Nguyen et al. [3] proposed a novel procedure to obtain CPCs from RS
codes of lengths p − 1 and p + 1, respectively, where p is a prime number. Using the discrete Fourier
transform, Yang et al. [20] developed an efficient algorithm to produce a CPC from a p-ary cyclic
code, where p is a prime number. Extending the results of [3,20], Cho et al. [21] proposed an effective
algorithm to generate CPCs from a prime-length cyclic code. Recently, Bastos and Lemos-Neto [22]
presented a method to obtain a CPC from a simple-root cyclic code by using the x-cyclotomic coset.
More specifically, the determinant of codewords of C′ is dependent on that of the x-cyclotomic coset
modulo h(x), where h(x) is a divisor of xn − 1.

In this paper, we aim to give the generalization of CPCs, which are called constacyclically
permutable codes (CCPCs), and to introduce a method to derive a CCPC from a given constacyclic
code. More specifically, let C be a given λ-constacyclic code of length n over F, where λ is a nonzero
element of F with order t, and φ be the cyclic shift of C. Two codewords c1, c2 of C are said to be
equivalent if there is an integer r such that φr(c1) = c2. In other words, the cyclic subgroup 〈φ〉 of the
automorphism group of C generated by the cyclic shift φ acts naturally on the constacyclic code C;
then, c1 and c2 are equivalent if and only if they are in the same orbit. For an element c of C, if the
length of the orbit containing c is nt, that is, nt is the least positive integer satisfying that φnt(c) = c, then
we state that c has full constacyclic order. The orbit of size nt is called the nonperiodic constacyclic
equivalence class. A CCPC generated from C is formed by taking exactly one element from each
nonperiodic constacyclic equivalence class of C, denoted still as C′. Similar to the case of CPCs,

AIMS Mathematics Volume 9, Issue 5, 12852–12869.



12854

we focus on solving the following problem: For a given arbitrary constacyclic code C, we want to
determine the exact value of |C′|, where |C′| denotes the size of C′, and to find a general construction
scheme that produces C′. To this end, we use the language of group actions to reinterpret that C′ is
merely a representative of the n-length orbits of 〈φ〉 on C, where 〈φ〉 is the cyclic subgroup of the
automorphism group of C generated by the cyclic shift φ. One of the advantages of our new approach
lies in that the codewords of C are presented in terms of the primitive idempotents of C. Based on this
approach, we present a new enumerative formula for the code size of such a CCPC with all of the terms
being positive integers. On the other hand, we provide an algebraic method to produce such a CCPC.

This paper is organized as follows. We provide the basic notation and some results about
constacyclic codes in Section 2. An enumerative formula for the exact value of |C′| is given in Section 3.
Section 4 proposes an effective method to generate C′, where C is any simple-root constacyclic code,
and presents an example to illustrate our main results.

2. Preliminaries

Let q be a prime power and n be a positive integer that is coprime with q. Let Fq denote a finite field
with q elements and F×q denote the set of all nonzero elements of Fq, that is, F×q = Fq\{0}. Let x be an
indeterminate over Fq and Fq[x] be the polynomial ring in variable x with coefficients in Fq. Let Z be
the set of integers, Z+ be the set of the positive integers, and N be the set of non-negative integers. For
s ∈ N, let [0, s] denote the set {0, 1, 2, · · · , s}. For any finite number of integers a1, a2, · · · , aν which
are not all equal to 0, we denote their greatest common divisor by gcd(a1, a2, · · · , aν); for any finite
number of integers a1, a2, · · · , aν, none of which is equal to 0, denote their least common multiple by
lcm(a1, a2, · · · , aν), where ν ≥ 2 is a positive integer. We use the notation H ≤ G to indicate that H is
a subgroup of G. For the set S , let |S | denote the number of elements of S . For a, b ∈ Z, we use a|b to
denote that a divides b.

Let us review the definition of a constacyclic code. Let λ be a nonzero element of Fq, that is, λ ∈ F×q .
Let φ be the cyclic shift, as follows:

c = (c0, c1, · · · , cn−1) 7→ φ(c) = (λcn−1, c0, · · · , cn−2).

A linear code C is λ-constacyclic if c ∈ C implies that φ(c) ∈ C. When λ = 1, the λ-constacyclic code is
the usual cyclic code. Since we may associate each codeword (c0, c1, · · · , cn−1) in C with a polynomial
c0 + c1x + · · · + cn−1xn−1 in the quotient ring Fq[x]/〈xn − λ〉, a λ-constacyclic code of length n over Fq

is an ideal of the quotient ring Fq[x]/〈xn − λ〉. Write R = Fq[x]/〈xn − λ〉. If c = (c0, c1, · · · , cn−1) is
regarded as a polynomial c(x) = c0 + c1x + · · · + cn−1xn−1, then φ(c) = φ(c(x)) = xc(x) in R. Note that
R is a principal ideal domain. Hence there is a unique monic polynomial g(x) of minimum degree in
the constacyclic code C. This polynomial generates C, that is, C = 〈g(x)〉, and it is called the generator
polynomial for C (e.g., see [23, 24]).

In this section, we explore another approach to describe constacyclic codes, involving a different
type of generating polynomial other than the generator polynomial. A polynomial e(x) ∈ R is said to
be idempotent in R if e2(x) = e(x). Since gcd(n, q) = 1, any constacyclic code C is generated by an
idempotent, that is, there exists an idempotent e(x) in R such that C = 〈e(x)〉 = Re(x) (see [23]). Two
idempotents e(x) and f (x) are called orthogonal if e(x) f (x) = 0 in R. A nonzero idempotent e(x) in R
is called primitive if it cannot be written as the sum of two nonzero orthogonal idempotents in R.
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Let t be the multiplication order of λ. Then, t|(q − 1), which implies that gcd(q, t) = 1. Noting that
gcd(q, n) = 1, we have that gcd(q, nt) = 1. Let m be the least integer such that (nt)|(qm − 1) and Fqm be
the finite field with qm elements. Then, there exists a primitive (nt)th root η of unity in F×qm such that

λ = ηn. Thus, xn − λ =
n−1∏
j=0

(x − η1+t j). Let

C0 =
{
(1 + t · i0)q j

∣∣∣ j ∈ Z} =
{
1, q, q2, · · · , qk0−1};

C1 =
{
(1 + t · i1)q j

∣∣∣ j ∈ Z} =
{
1 + ti1, (1 + ti1)q, (1 + ti1)q2, · · · , (1 + ti1)qk1−1};

...

Cs =
{
(1 + t · is)q j

∣∣∣ j ∈ Z} =
{
1 + tis, (1 + tis)q, (1 + tis)q2, · · · , (1 + tis)qks−1},

where 0 = i0 < i1 < i2 < · · · < is ≤ n − 1 and k j is the smallest positive integer such that 1 + t · i j ≡

(1 + t · i j)qk j (mod nt) for 0 ≤ j ≤ s. Therefore, C0,C1, · · · ,Cs are all distinct q-cyclotomic cosets
modulo nt and form a partition of the set {1 + ti|i = 0, 1, · · · , n − 1}. Clearly, |C j| = qk j , j = 0, 1, · · · , s.

Now, consider the factorization

xn − λ =

s∏
v=0

mv(x)

of xn − λ as irreducible factors over Fq, where for v = 0, 1, · · · , s,

mv(x) =
∏
j∈Cv

(x − η j).

According to the Chinese remainder theorem, we have that

R � Fq[x]/〈m0(x)〉 ⊕ Fq[x]/〈m1(x)〉 ⊕ · · · ⊕ Fq[x]/〈ms(x)〉.

For v = 0, 1, · · · , s, we let Mv(x) = xn−λ
mv(x) and Iv = Fq[x]/〈mv(x)〉. Then,

Iv = Fq[x]/〈mv(x)〉 � 〈Mv(x)〉, v = 0, 1, · · · , s.

Hence, Iv is a minimal code in R with the generator polynomial Mv(x), as well as a finite field with qkv

elements for v = 0, 1, · · · , s.
Let θ0(x), θ1(x), · · · , θs(x) be all primitive idempotents in R (see, for example, [25]). In fact, θv(x)

is the generating idempotent of minimal code Iv, that is, Iv = 〈θv(x)〉 = Rθv(x). All of the primitive
idempotents in R have the following property: For 0 ≤ i, j ≤ s,

θi(x)θ j(x) =

θi(x), i = j;
0, i , j.

Let f (x) =
n−1∑
i=0

aixi ∈ R, and let

f (x) = mv(x)ψ(x) + r(x),

where deg(r(x)) < kv and 0 ≤ v ≤ s. Then since there exists a polynomial ϕ(x) such that θv(x) =

ϕ(x)Mv(x) (please see [26, Theorem 7.4.9]), we obtain that

f (x)θv(x) = mv(x)θv(x)ψ(x) + r(x)θv(x)
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= mv(x)ϕ(x)Mv(x)ψ(x) + r(x)θv(x)
= (xn − λ)ϕ(x)ψ(x) + r(x)θv(x)
= r(x)θv(x).

Hence, for v = 0, 1, · · · , s,

Iv = Rθv(x) =
{
f (x)θv(x)| f (x) ∈ R

}
=

{ kv−1∑
j=0

a jx jθv(x)|a j ∈ Fq

}
. (2.1)

In addition, the representation of each element in Iv is unique; thus |Iv| = qkv .
For the quotient ring Fqm[x]/〈xn − λ〉, there are n primitive idempotents (see, for example, [25]):

e1+t j(x) =
1
n

n−1∑
u=0

η−u(1+t j)xu, j = 0, 1, · · · , n − 1. (2.2)

Then, for every u with 0 ≤ u ≤ n − 1,

n−1∑
j=0

ηu(1+t j)e1+t j(x) =

n−1∑
j=0

ηu(1+t j) ·
1
n

n−1∑
v=0

η−v(1+t j)xv

=
1
n

n−1∑
j=0

n−1∑
v=0

η(u−v)(1+t j)xv

= xu.

This shows that

xu =

n−1∑
j=0

ηu(1+t j)e1+t j(x). (2.3)

In what follows, we determine the explicit formula for the primitive idempotents θv(x)′s. Assume

that θv(x) =
n−1∑
u=0

buxu. Then,

1
n

n−1∑
j=0

θv(η1+t j)η−u(1+t j) =
1
n

n−1∑
j=0

n−1∑
κ=0

bκη(1+t j)κη−u(1+t j)

=
1
n

n−1∑
j=0

n−1∑
κ=0

bκη(1+t j)(u−κ)

=
1
n

n−1∑
κ=0

bκ
n−1∑
j=0

η(1+t j)(κ−u) = bu.

That is to say,

bu =
1
n

n−1∑
j=0

θv(η1+t j)η−u(1+t j). (2.4)
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On the other hand, since θv(x) is idempotent, we have that θ2
v(x) = θv(x) in R; thus θ2

v(η j) = θv(η j)
for j ≥ 1. Therefore, θv(η j) = 0 or 1. But, according to [26, Theorem 7.4.12], θv(x) and Mv(x) have the
same zeros among the n-th roots of λ; thus

θv(η j) =

0, if j < Cv;
1, if j ∈ Cv.

Therefore,

bu =
1
n

∑
j∈Cv

η−u j. (2.5)

Thus, by (2.2) and (2.5), we deduce that

θv(x) =

n−1∑
u=0

buxu =
1
n

n−1∑
u=0

∑
j∈Cv

η−u jxu =
∑
j∈Cv

e j(x). (2.6)

Hence, we can use θv(x) to determine all of the elements of Iv in (2.1), as follows:

kv−1∑
j=0

a jx jθv(x) =

kv−1∑
j=0

a j

n−1∑
κ=0

η j(1+tκ)e1+tκ(x)
∑
u∈Cv

eu(x)

=

kv−1∑
j=0

a j

s∑
`=0

∑
κ∈C`

η jκeκ(x)
∑
u∈Cv

eu(x)

=

kv−1∑
j=0

a j

s∑
`=0

∑
κ∈C`

η jκ
∑
u∈Cv

eκ(x)eu(x)

=

kv−1∑
j=0

a j

∑
κ∈Cv

η jκeκ(x)

=

kv−1∑
j=0

a j

kv−1∑
u=0

η j(1+tiv)qu
e(1+tiv)qu(x)

=

kv−1∑
j=0

kv−1∑
u=0

a jη
j(1+tiv)qu

e(1+tiv)qu(x).

Therefore, we get that
R = Rθ0(x) ⊕ Rθ1(x) ⊕ · · · ⊕ Rθs(x), (2.7)

where

Rθv(x) =

{ kv−1∑
j=0

kv−1∑
u=0

a jη
j(1+tiv)qu

e(1+tiv)qu(x)|a j ∈ Fq

}
, (2.8)

for v = 0, 1, · · · , s.
Let C be a λ-constacyclic code. Then, we can write

C =
⊕

j∈J

Rθ j(x), (2.9)
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where J is a nonempty subset of [0, s], and further denote the following:

C] =
⊕

j∈J

Rθ j(x)\{0}. (2.10)

3. An enumerative formula for CCPCs

In this section, we aim to obtain a closed formula for the exact value of |C′| for a given constacyclic
code C. To this end, we explore the characterization of codewords of C with full constacyclic orders.

Lemma 3.1. Let a, b, iv, u ∈ N and a ≡ b (mod n). Then, as two elements of R we have

η−a(1+tiv)qu
xa = η−b(1+tiv)qu

xb.

Proof. Assume that b = ns + a(s ∈ Z). Then,

η−b(1+tiv)qu
xb = η−(ns+a)(1+tiv)qu

xns+a

= η−a(1+tiv)qu
xa · η−ns(1+tiv)qu

xns.

Notice that xn = λ = ηn and λ is an element of order t; we have

η−ns(1+tiv)qu
xns = η−ns(1+tiv)qu

ηns = η−nstivqu
= λ−tivqu

= 1.

This proves the result. �

Lemma 3.2. Assume that r is a positive integer and v ∈ [0, s]. Let

a(x) =

kv−1∑
j=0

kv−1∑
u=0

a jη
j(1+tiv)qu

e(1+tiv)qu(x) ∈ Rθv(x),

where a j ∈ Fq for 0 ≤ j ≤ kv − 1. Then,
(1) φr(e(1+tiv)qu(x)) = ηr(1+tiv)qu

e(1+tiv)qu(x);

(2) φr(a(x)) =
kv−1∑
j=0

kv−1∑
u=0

a jη
( j+r)(1+tiv)qu

e(1+tiv)qu(x);

(3) φr(a(x)) = a(x) if and only if nt
gcd(n,1+tiv)

∣∣∣r.

Proof. (1) By (2.2) and Lemma 3.1, we have

φr(e(1+tiv)qu(x)) = xre(1+tiv)qu(x)

= xr ·
1
n

n−1∑
j=0

η− j(1+tiv)qu
x j

= ηr(1+tiv)qu
·

1
n

n−1∑
j=0

η−( j+r)(1+tiv)qu
x j+r

= ηr(1+tiv)qu
e(1+tiv)qu(x).

This proves part (1).
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(2) From (1) above, it follows that

φr(a(x)) =

kv−1∑
j=0

kv−1∑
u=0

a jη
j(1+tiv)qu

φr(e(1+tiv)qu(x))

=

kv−1∑
j=0

kv−1∑
u=0

a jη
j(1+tiv)qu

· ηr(1+tiv)qu
e(1+tiv)qu(x)

=

kv−1∑
j=0

kv−1∑
u=0

a jη
( j+r)(1+tiv)qu

e(1+tiv)qu(x).

This proves part (2).
(3) By part (2), we see that φr(a(x)) = a(x) if and only if ηr(1+tiv)qu

= 1. Notice that gcd(nt, qu) = 1,
gcd(t, 1 + tiv) = 1, and gcd

( nt
gcd(nt,1+tiv) ,

1+tiv
gcd(nt,1+tiv)

)
= 1. It follows that

φr(a(x)) = a(x) ⇔ (nt)|r(1 + tiv)qu

⇔ (nt)|r(1 + tiv)

⇔
nt

gcd(nt, 1 + tiv)

∣∣∣∣r 1 + tiv

gcd(nt, 1 + tiv)

⇔
nt

gcd(n, 1 + tiv)

∣∣∣∣r.
This concludes the proof. �

Based on the preliminaries above, the next two results can be used to characterize the codewords
with full constacyclic order for a given constacyclic code, which are discussed for the irreducible and
reducible cases. These can be attributed to some number theory conditions.

Lemma 3.3. Let v ∈ [0, s] and C = Rθv(x) be an irreducible constacyclic code generated by the
primitive idempotent θv(x) as shown in (2.8). Then, we have the following:

(1) If gcd(n, 1 + tiv) = 1, then every nonzero element of C has full constacyclic order.
(2) If gcd(n, 1 + tiv) , 1, then none of the nonzero elements of C has full constacyclic order.

Proof. (1) Suppose that gcd(n, 1 + tiv) = 1. Let a(x) be an arbitrary element in C and r0 be the least
positive integer such that φr0(a(x)) = a(x). Since φnt(a(x)) = a(x), we have that r0|(nt). On the other
hand, by Lemma 3.2(3), we get that (nt)|r0. Therefore, r0 = nt, i.e., every nonzero element of C has
full constacyclic order.

(2) Suppose that gcd(n, 1 + tiv) , 1. Set r′0 = nt
gcd(nt,1+tiv) . Then, r′0 < nt and, by Lemma 3.2(3), it

follows that φr′0(a(x)) = a(x) for every nonzero element a(x), which implies that none of the nonzero
elements of C has full constacyclic order. �

Lemma 3.4. Let u ≥ 2 be an integer, and let J = { j1, j2, · · · , ju} ⊆ [0, s] with 0 ≤ j1 < j2 < · · · < ju ≤

s. Let C be a constacyclic code, as shown in (2.9), and C] be as in (2.10). Then, we have the following:
(1) If gcd(n, 1 + ti j1 , 1 + ti j2 , · · · , 1 + ti ju) = 1, then every nonzero element of C] has full constacyclic

order.
(2) If gcd(n, 1 + ti j1 , 1 + ti j2 , · · · , 1 + ti ju) , 1, then none of the nonzero elements of C] has full

constacyclic order.
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Proof. Let a(x) = a1(x) + a2(x) + · · · + au(x) be an arbitrary element in C], where a`(x) ∈ Rθ j`(x) for
` = 0, 1, · · · , u, and s0 be the least positive integer such that φs0(a(x)) = a(x). Since φnt(a(x)) = a(x),
we have that s0|(nt). On the other hand, we see that φs0(a(x)) = a(x) if and only if φs0(a`(x)) = a`(x)
for ` = 0, 1, · · · , u. By Lemma 3.2(3), we get that φs0(a`(x)) = a`(x) for ` = 0, 1, · · · , u if and only if

nt
gcd(nt, 1 + ti j`)

∣∣∣∣s0,

for ` = 0, 1, · · · , u. Further, nt
gcd(nt,1+ti j` )

∣∣∣∣s0 for ` = 0, 1, · · · , u if and only if

lcm
( nt
gcd(nt, 1 + ti j1)

,
nt

gcd(nt, 1 + ti j2)
, · · · ,

nt
gcd(nt, 1 + ti ju)

)∣∣∣∣s0.

By induction on u, we can easily prove the equality, as follows:

lcm
( nt
gcd(nt, 1 + ti j1)

,
nt

gcd(nt, 1 + ti j2)
, · · · ,

nt
gcd(nt, 1 + ti ju)

)
=

nt
gcd(n, 1 + ti j1 , 1 + ti j2 , · · · , 1 + ti ju)

.

Therefore, nt
gcd(nt,1+ti j` )

∣∣∣∣s0 for ` = 0, 1, · · · , u if and only if

nt
gcd(n, 1 + ti j1 , 1 + ti j2 , · · · , 1 + ti ju)

∣∣∣∣s0.

(1) Suppose that gcd(n, 1 + ti j1 , 1 + ti j2 , · · · , 1 + ti ju) = 1. Then, we get (nt)|s0. Hence, s0 = nt.
Therefore, every nonzero element of C] has full constacyclic order.

(2) Suppose that gcd(n, 1 + ti j1 , 1 + ti j2 , · · · , 1 + ti ju) , 1. Set

s′0 =
nt

gcd(n, 1 + ti j1 , 1 + ti j2 , · · · , 1 + ti ju)
.

Then, s′0 < nt. According to the above proof, we can see that φr(a(x)) = a(x) for a(x) ∈ C] if and only
if

nt
gcd(n, 1 + ti j1 , 1 + ti j2 , · · · , 1 + ti ju)

∣∣∣∣r.
So φs′0(a(x)) = a(x). Since s′0 < nt, a(x) has no full constacyclic order. a(x) is arbitrary, implying that
none of the nonzero elements of C] has full constacyclic order. �

Let C be a constacyclic code, as shown in (2.9) with J = { j1, j2, · · · , ju} ⊆ [0, s], where 0 ≤ j1 <

j2 < · · · < ju ≤ s. That is,
C = Rθ j1(x) ⊕ Rθ j2(x) ⊕ · · · ⊕ Rθ ju(x). (3.1)

Then,
C] = Rθ j1(x)\{0} ⊕ Rθ j2(x)\{0} ⊕ · · · ⊕ Rθ ju(x)\{0}. (3.2)

For 1 ≤ v ≤ u, let

Θv =
{
{ j`1 , j`2 , · · · , j`v}

∣∣∣1 ≤ `1 < `2 < · · · < `v ≤ u, gcd(n, 1 + ti j`1
, 1 + ti j`2

, · · · , 1 + ti j`v ) = 1
}
. (3.3)
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For { j`1 , j`2 , · · · , j`v} ∈ Θv, set

C]
`1,`2,··· ,`v

= Rθ j`1
(x)\{0} ⊕ Rθ j`2

(x)\{0} ⊕ · · · ⊕ Rθ j`v (x)\{0}. (3.4)

Thus according to the characterization conditions above about the codewords with full constacyclic
order, the following result is easily obtained, which determines the exact value of |C′| for a given
arbitrary constacyclic code C.

Theorem 3.5. Let the notation be as above. Let C be a constacyclic code, as shown in (3.1). Then, the
following holds:

(1) The elements of C with full constacyclic order are given by

u⋃
v=1

⋃
{ j`1 , j`2 ,··· , j`v }∈Θv

C]
`1,`2,··· ,`v

.

(2) |C′| is given as follows:

|C′| =
1
nt

u∑
v=1

∑
{ j`1 , j`2 ,··· , j`v }∈Θv

v∏
ρ=1

(
qk j`ρ − 1

)
.

Proof. (1) It follows from Lemmas 3.3 and 3.4.
(2) According to the definition of C′, and based on the result of (1), we have

(nt)|C′| =
u∑

v=1

∑
{ j`1 , j`2 ,··· , j`v }∈Θv

∣∣∣C]
`1,`2,··· ,`v

∣∣∣.
Since ∣∣∣C]

`1,`2,··· ,`v

∣∣∣ =

v∏
ρ=1

(
qk j`ρ − 1),

we obtain the desired result.

4. Generation of CCPCs

In this section, we delve more deeply into the structure of CCPCs, paying particular attention to the
elements of C′ for a given constacyclic code C. First, we describe the observation. Recall that, for
v ∈ [0, s] the irreducible code Rθv(x) is given by

Rθv(x) =

{ kv−1∑
j=0

kv−1∑
u=0

a jη
j(1+tiv)qu

e(1+tiv)qu(x)
∣∣∣∣a j ∈ Fq

}
.

Notice the following fact about the element of Rθv(x):

kv−1∑
j=0

kv−1∑
u=0

a jη
j(1+tiv)qu

e(1+tiv)qu(x) =

kv−1∑
u=0

( kv−1∑
j=0

a jη
j(1+tiv)

)qu

e(1+tiv)qu(x).
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And, when a j runs through Fq,
∑kv−1

j=0 a jη
j(1+tiv) just runs through finite field Fqkv . Then, Rθv(x) can be

expressed, as follows:

Rθv(x) =

{ kv−1∑
u=0

ωqu
e(1+tiv)qu(x)

∣∣∣∣ω ∈ Fqkv

}
. (4.1)

For every v ∈ [0, s], Rθv(x) = Fqkv is a finite field; we can denote its primitive element by γv, which
generates the cyclic group F×qkv = Fqkv\{0}. If gcd(n, 1 + tiv) = 1, then there is the decomposition of the
left cosets of 〈η1+tiv〉 = 〈η〉 in F×qkv = Fqkv\{0}, as follows:

F×qkv = 〈η1+tiv〉 ∪ γv〈η
1+tiv〉 ∪ · · · γ

qkv−1
nt −1

v 〈η1+tiv〉. (4.2)

We first consider irreducible constacyclic codes.

Theorem 4.1. Let C = Rθv(x) be an irreducible constacyclic code over Fq, where v ∈ [0, s]. Suppose
that gcd(n, 1 + tiv) = 1, and keep the notation as in (4.2). Then,

C′ =

{ kv−1∑
u=0

γ`q
u

v e(1+tiv)qu(x)
∣∣∣∣0 ≤ ` ≤ qkv − 1

nt
− 1

}
.

is a CCPC of size qkv−1
nt .

Proof. By Lemma 3.3, every nonzero element of C has full constacyclic order. Suppose that

a(x) =

kv−1∑
u=0

ω
qu

1 e(1+tiv)qu(x) ∈ Rθv(x)\{0};

b(x) =

kv−1∑
u=0

ω
qu

2 e(1+tiv)qu(x) ∈ Rθv(x)\{0},

where ω1, ω2 ∈ Fqkv . If there exists r such that φr(a(x)) = b(x), then, by Lemma 3.2(2), we see that

φr(a(x)) =

kv−1∑
u=0

(ηr(1+tiv)ω1)qu
e(1+tiv)qu(x) = b(x) =

kv−1∑
u=0

ω
qu

2 e(1+tiv)qu(x).

Therefore, φr(a(x)) = b(x) if and only if ηr(1+tiv)ω1 = ω2, which implies that ω1 and ω2 make up the
same left coset of 〈η1+tiv〉 = 〈η〉 in F×qkv = Fqkv\{0}. Therefore, according to (4.2), we obtain the desired
result. �

In what follows, we consider the case when C is a reducible constacyclic code. Let C be as in (3.1),
where u ≥ 2. For simplicity, we write

ακ = j`κ , κ = 1, 2, · · · , v.

mκ =
(qkακ − 1) gcd(n, 1 + tiακ)

nt
, κ = 1, 2, · · · , v;
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nκ =
nt gcd(n, 1 + tiα1 , 1 + tiα2 , · · · , 1 + tiακ)

gcd(n, 1 + tiα1 , 1 + tiα2 , · · · , 1 + tiακ−1) gcd(n, 1 + tiακ)
, κ = 2, 3, · · · , v.

We set

G1 =

v⊕
κ=1

Rθακ(x)\{0} =

v⊕
κ=1

Fqακ\{0} =

v⊕
κ=1

F×qακ .

G2 =

v⊕
κ=1

〈
η1+tiακ

〉
=

〈
η1+tiα1

〉
⊕

〈
η1+tiα2

〉
⊕ · · · ⊕

〈
η1+tiαv

〉
.

G3 =
〈 v∑
κ=1

η1+tiακ
〉

=
〈
η1+tiα1 + η1+tiα2 + · · · + η1+tiαv

〉
.

Then G3 ≤ G2 ≤ G1.
Suppose that γακ is the primitive element of the finite field Fqkακ = F

q
k j`κ

, that is to say, F×
qkακ

= 〈γακ〉

for κ = 1, 2, · · · , v.
Our goal now is to construct a coset decomposition of G3 in G1. First, for κ = 1, 2, · · · , v,

F×qkακ
=

mκ−1⋃
εκ=0

γεκακ
〈
η1+tiακ

〉
.

Then, there exists a coset decomposition of the subgroup G2 in G1:

G1 =

m1−1⋃
ε1=0

m2−1⋃
ε2=0

· · ·

mv−1⋃
εv=0

( v∑
κ=1

γεκακ

)
G2.

Next, the routine check shows that there is a coset decomposition of the subgroup G3 in G2:

G2 =

n2−1⋃
σ2=0

· · ·

nv−1⋃
σv=0

{(
θ1+tiα1 + θσ2(1+tiα2 ) + · · · + θσv(1+tiαv )

)
G3

}
=

n2−1⋃
σ2=0

· · ·

nv−1⋃
σv=0

{( v∑
j=1

θσ j(1+tiα j )
)
G3

}
,

(4.3)

where σ1 = 1.
Therefore, the coset decomposition of the subgroup G3 in G1 is given as follows:

G1 =

m1−1⋃
ε1=0

m2−1⋃
ε2=0

· · ·

mv−1⋃
εv=0

n2−1⋃
σ2=0

· · ·

nv−1⋃
σv=0

{( v∑
κ=1

γεκακ

)( v∑
j=0

θσ j(1+tiα j )
)
G3

}

=

m1−1⋃
ε1=0

m2−1⋃
ε2=0

· · ·

mv−1⋃
εv=0

n2−1⋃
σ2=0

· · ·

nv−1⋃
σv=0

{ v∑
κ=1

v∑
j=1

(
γεκακ · θ

σ j(1+tiα j )
)
G3

}
.

(4.4)

We are now in a position to determine a CCPC from a given constacyclic code.
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Theorem 4.2. Apply the notation as above. Let C be a constacyclic code with the decomposition of
the form as in (3.1). Then,

C′ =

u⋃
v=1

⋃
{ j`1 , j`2 ,··· , j`v }∈Θv

m1−1⋃
ε1=0

m2−1⋃
ε2=0

· · ·

mv−1⋃
εv=0

n2−1⋃
σ2=0

· · ·

nv−1⋃
σv=0{ v∑

ε=1

v∑
κ=1

v∑
j=1

kαε−1∑
u=0

(
γεκακ · θ

σ j(1+tiα j )
)qu

e(1+tiαε )qu(x)
}
.

(4.5)

is a CCPC of size
1
nt

u∑
v=1

∑
{ j`1 , j`2 ,··· , j`v }∈Θv

v∏
ρ=1

(
qk j`ρ − 1

)
where Θv is as shown in (3.3).

Proof. Let { j`1 , j`2 , · · · , j`v} ∈ Θv, where 1 ≤ v ≤ u. Now, we only need to consider the following
subcode:

Rθ j`1
(x) ⊕ Rθ j`2

(x) ⊕ · · · ⊕ Rθ j`v (x).

Note that, for 1 ≤ ε ≤ v,

Rθαε (x) = Rθ j`ε (x) =

{ kαε−1∑
u=0

ωqu
e(1+tiαε )qu(x)

∣∣∣∣ω ∈ Fqkαε

}
.

Assume that

f (x) =

v∑
ε=1

aε(x) ∈
v⊕
ε=1

Rθαε (x); g(x) =

v∑
ε=1

bε(x) ∈
v⊕
ε=1

Rθαε (x),

where

aε(x) =

kαε−1∑
u=0

ω
qu

1εe(1+tiαε )qu(x) ∈ Rθαε (x), ω1ε ∈ Fqkαε ,∀ 1 ≤ ε ≤ v;

bε(x) =

kαε−1∑
u=0

ω
qu

2εe(1+tiαε )qu(x) ∈ Rθαε (x), ω2ε ∈ Fqkαε ,∀ 1 ≤ ε ≤ v.

Then, for any r ∈ Z+, φr( f (x)) = g(x) if and only if

g(x) =

v∑
ε=1

kαε−1∑
u=0

ω
qu

2εe(1+tiαε )qu(x)

= φr( f (x)) =

v∑
ε=1

kαε−1∑
u=0

(ηr(1+tiαε )ω1ε)qu
e(1+tiαε )qu(x),

which holds if and only if
ηr(1+tiαε )ω1ε = ω2ε , ε = 1, 2, · · · , v,

AIMS Mathematics Volume 9, Issue 5, 12852–12869.



12865

which shows that both
∑v
ε=1 ω1ε and

∑v
ε=1 ω2ε are in the same coset of

〈 v∑
κ=1

η1+tiακ
〉

=
〈
η1+tiα1 + η1+tiα2 + · · · + η1+tiαv

〉
= G3

in the group
v⊕
κ=1

Rθακ(x)\{0} =

v⊕
κ=1

Fqακ\{0} =

v⊕
κ=1

F×qακ = G1.

By virtue of the result shown in (4.4), we immediately obtain this theorem. �

At the end of this section, we present an example to illustrate our main results.

Example 4.3. Let q = 5, n = 18, and λ = 4. All 5-cyclotomic cosets are as follows:

C0 = {1, 5, 25, 17, 13, 29},C1 = {3, 15},C2 = {7, 35, 31, 11, 19, 23},C3 = {9},C4 = {21, 33},C5 = {27}.

Then, t = 2 and
i0 = 0, i1 = 1, i2 = 3, i3 = 4, i4 = 10, i5 = 13;

k0 = 6, k1 = 2, k2 = 6, k3 = 1, k4 = 2, k5 = 1.

Assume that five constacyclic codes C1,C2,C3,C4,C5 are as follows:

C1 = Rθ1(x); C2 = Rθ2(x); C3 = Rθ3(x) ⊕ Rθ4(x);

C4 = Rθ1(x) ⊕ Rθ2(x); C5 = Rθ0(x) ⊕ Rθ2(x).

Set F×52 = 〈γ1〉 and F×56 = 〈γ2〉. Then, we have the following:
(1) According to Lemma 3.3, since gcd(n, 1+ti1) = gcd(18, 3) = 3 , 1, none of the nonzero elements

of C1 has full constacyclic order.
(2) According to Lemma 3.3, the fact that gcd(n, 1 + ti2) = gcd(18, 7) = 1 shows that every nonzero

element of C2 has full constacyclic order; thus

|C′2| =
qk7 − 1

nt
=

56 − 1
36

= 434.

By using Theorem 4.1, we get that

C′2 =

{ 5∑
u=0

γ`·5
u

1 e7·5u

∣∣∣0 ≤ ` ≤ 433
}
.

(3) According to Lemmas 3.3 and 3.4, since

gcd(n, 1 + ti3) = gcd(18, 9) = 9 , 1;

gcd(n, 1 + ti4) = gcd(18, 21) = 3 , 1;

gcd(n, 1 + ti3, 1 + ti4) = gcd(18, 9, 21) = 3 , 1,

none of the nonzero elements of C3 has full constacyclic order.
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(4) Since
gcd(n, 1 + ti1) = gcd(18, 3) = 3 , 1;

gcd(n, 1 + ti2) = gcd(18, 7) = 1;

gcd(n, 1 + ti1, 1 + ti2) = gcd(18, 3, 7) = 1,

then,
Θ1 =

{
{2}

}
; Θ2 =

{
{1, 2}

}
.

By Theorem 3.5, we get that

|C′4| =
1
nt

[
(qk2 − 1) + (qk1 − 1)(qk2 − 1)

]
=

1
nt

qk1(qk2 − 1) =
1

36
· 52 · (56 − 1) = 10850.

In addition,

m1 =
(qk1 − 1) gcd(n, 1 + ti1)

nt
=

(52 − 1) gcd(18, 3)
36

= 2.

m2 =
(qk2 − 1)

nt
=

56 − 1
36

= 434.

n2 =
nt gcd(n, 1 + ti1, 1 + ti2)

gcd(n, 1 + ti1) gcd(n, 1 + ti2)
=

36 gcd(18, 3, 7)
gcd(18, 3) gcd(18, 7)

= 12.

By Theorem 4.2, we have that

C′4 =

433⋃
ε2=0

{ 24∑
u=0

(
γε2

1 θ
1+ti2)qu

e(1+ti2)qu(x)
}⋃

1⋃
ε1=0

433⋃
ε2=0

11⋃
σ2=0

{ 2∑
ε=1

2∑
κ=1

2∑
j=1

24∑
u=0

(
γεκ2 θ

σ j(1+ti j))qu

e(1+tiε )qu(x)
}

=

433⋃
ε2=0

{ 24∑
u=0

(
γε2

1 θ
7)5u

e7·5u(x)
}⋃

1⋃
ε1=0

433⋃
ε2=0

11⋃
σ2=0

{ 2∑
ε=1

2∑
κ=1

2∑
j=1

24∑
u=0

(
γεκ2 θ

σ j(1+2i j))5u

e(1+2iε )5u(x)
}
.

Here, from the formula of C′4, we can also get that

|C′4| = 434 + 2 × 434 × 12 = 10850,

which is the same as the above result provided by Theorem 3.5.
(5) Since

gcd(n, 1 + ti0) = gcd(18, 1) = 1;

gcd(n, 1 + ti2) = gcd(18, 7) = 1;

gcd(n, 1 + ti0, 1 + ti2) = gcd(18, 1, 7) = 1,
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then
Θ1 =

{
{0}, {2}

}
; Θ2 =

{
{0, 2}

}
.

By Theorem 3.5, we get that

|C′5| =
1
nt

[
(qk0 −1) + (qk2 −1) + (qk0 −1)(qk2 −1)

]
=

1
36

[
(56−1) + (56−1) + (56−1)(56−1)

]
= 6781684.

In addition,

m1 =
(qk0 − 1) gcd(n, 1 + ti0)

nt
=

(56 − 1) gcd(18, 1)
36

= 434.

m2 =
(qk2 − 1) gcd(n, 1 + ti2)

nt
=

(56 − 1) gcd(18, 7)
36

= 434.

n2 =
nt gcd(n, 1 + ti0, 1 + ti2)

gcd(n, 1 + ti0) gcd(n, 1 + ti2)
=

36 gcd(18, 1, 7)
gcd(18, 1) gcd(18, 7)

= 36.

By Theorem 4.2, we have that

C′5 =

433⋃
ε1=0

{ 15624∑
u=0

(
γε1

1 θ
1+ti0)qu

e(1+ti0)qu(x)
}⋃ 433⋃

ε2=0

{ 15624∑
u=0

(
γε2

2 θ
1+ti2)qu

e(1+ti2)qu(x)
}⋃

433⋃
ε1=0

433⋃
ε2=0

35⋃
σ2=0

{ 2∑
ε=1

2∑
κ=1

2∑
j=1

15624∑
u=0

(
γεκ2 θ

σ j(1+ti j))qu

e(1+tiε )qu(x)
}

=

433⋃
ε1=0

{ 15624∑
u=0

(
γε1

1 θ
)5u

e1·5u(x)
}⋃ 433⋃

ε2=0

{ 15624∑
u=0

(
γε2

2 θ
7)5u

e7·5u(x)
}⋃

433⋃
ε1=0

433⋃
ε2=0

35⋃
σ2=0

{ 2∑
ε=1

2∑
κ=1

2∑
j=1

15624∑
u=0

(
γεκκ θ

σ j(1+2i j))5u

e(1+2iε )5u(x)
}
.

Here, from the formula of C′5, we can also get that

|C′5| = 434 + 434 + 434 × 434 × 36 = 6781684,

which is the same as the above result provided by Theorem 3.5.

5. Conclusions

In this paper, we have introduced the definition of CCPCs and mainly focused on the construction
of such a class of codes. First, we proposed a new and explicit enumerative formula for the code size
of such CCPCs. Next, we provided an effective method to obtain such a CCPC by using an algebraic
tool. A possible direction for future work is to consider the problem of constructing CCPCs with the
largest possible code size from a given repeated-root constacyclic code.
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