Research article Special Issues

Double inertial steps extragadient-type methods for solving optimal control and image restoration problems

  • Received: 12 January 2024 Revised: 19 March 2024 Accepted: 26 March 2024 Published: 07 April 2024
  • MSC : 47H05, 47J20, 47J25, 65K15

  • In order to approximate the common solution of quasi-nonexpansive fixed point and pseudo-monotone variational inequality problems in real Hilbert spaces, this paper presented three new modified sub-gradient extragradient-type methods. Our algorithms incorporated viscosity terms and double inertial extrapolations to ensure strong convergence and to speed up convergence. No line search methods of the Armijo type were required by our algorithms. Instead, they employed a novel self-adaptive step size technique that produced a non-monotonic sequence of step sizes while also correctly incorporating a number of well-known step sizes. The step size was designed to lessen the algorithms' reliance on the initial step size. Numerical tests were performed, and the results showed that our step size is more effective and that it guarantees that our methods require less execution time. We stated and proved the strong convergence of our algorithms under mild conditions imposed on the control parameters. To show the computational advantage of the suggested methods over some well-known methods in the literature, several numerical experiments were provided. To test the applicability and efficiencies of our methods in solving real-world problems, we utilized the proposed methods to solve optimal control and image restoration problems.

    Citation: Austine Efut Ofem, Jacob Ashiwere Abuchu, Godwin Chidi Ugwunnadi, Hossam A. Nabwey, Abubakar Adamu, Ojen Kumar Narain. Double inertial steps extragadient-type methods for solving optimal control and image restoration problems[J]. AIMS Mathematics, 2024, 9(5): 12870-12905. doi: 10.3934/math.2024629

    Related Papers:

  • In order to approximate the common solution of quasi-nonexpansive fixed point and pseudo-monotone variational inequality problems in real Hilbert spaces, this paper presented three new modified sub-gradient extragradient-type methods. Our algorithms incorporated viscosity terms and double inertial extrapolations to ensure strong convergence and to speed up convergence. No line search methods of the Armijo type were required by our algorithms. Instead, they employed a novel self-adaptive step size technique that produced a non-monotonic sequence of step sizes while also correctly incorporating a number of well-known step sizes. The step size was designed to lessen the algorithms' reliance on the initial step size. Numerical tests were performed, and the results showed that our step size is more effective and that it guarantees that our methods require less execution time. We stated and proved the strong convergence of our algorithms under mild conditions imposed on the control parameters. To show the computational advantage of the suggested methods over some well-known methods in the literature, several numerical experiments were provided. To test the applicability and efficiencies of our methods in solving real-world problems, we utilized the proposed methods to solve optimal control and image restoration problems.



    加载中


    [1] J. Abuchu, A. Ofem, G. Ugwunnadi, O. Narain, A. Hussain, Hybrid alternated inertial projection and contraction algorithm for solving bilevel variational inequality problems, J. Math., 2023 (2023), 3185746. http://dx.doi.org/10.1155/2023/3185746 doi: 10.1155/2023/3185746
    [2] A. Adamu, A. Adam, Approximation of solutions of split equality fixed point problems with applications, Carpathian J. Math., 37 (2021), 381–392. http://dx.doi.org/10.37193/CJM.2021.03.02 doi: 10.37193/CJM.2021.03.02
    [3] H. Bauschke, P. Combettes, A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), 248–264. http://dx.doi.org/10.1287/moor.26.2.248.10558 doi: 10.1287/moor.26.2.248.10558
    [4] A. Bressan, B. Piccoli, Introduction to the mathematical theory of control, San Francisco: American Institute of Mathematical Sciences, 2007.
    [5] G. Cai, Y. Shehu, O. Iyiola, Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators, J. Ind. Manag. Optim., 18 (2022), 2873–2902. http://dx.doi.org/10.3934/jimo.2021095 doi: 10.3934/jimo.2021095
    [6] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. http://dx.doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [7] Y. Censor, A. Gibali, S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Method. Softw., 26 (2011), 827–845. http://dx.doi.org/10.1080/10556788.2010.551536 doi: 10.1080/10556788.2010.551536
    [8] C. Chidume, A. Adamu, L. Okereke, Strong convergence theorem for some nonexpansive-type mappings in certain Banach spaces, Thai J. Math., 18 (2020), 1537–1548.
    [9] C. Chidume, A. Adamu, Solving split equality fixed point problem for quasi-phi-nonexpansive mappings, Thai J. Math., 19 (2021), 1699–1717.
    [10] P. Cholamjiak, D. Hieu, Y. Cho, Relaxed forward-backward splitting methods for solving variation inclusions and aplications, J. Sci. Comput., 88 (2021), 85. http://dx.doi.org/10.1007/s10915-021-01608-7 doi: 10.1007/s10915-021-01608-7
    [11] Y. Censor, A. Gibali, S. Reich, Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space, Optimization, 61 (2012), 1119–1132. http://dx.doi.org/10.1080/02331934.2010.539689 doi: 10.1080/02331934.2010.539689
    [12] G. Fichera, Sul problema elastostatico di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat, 34 (1963), 138–142.
    [13] A. Gibali, D. Thong, Tseng type-methods for solving inclusion problems and its applications, Calcolo, 55 (2018), 49. http://dx.doi.org/10.1007/s10092-018-0292-1 doi: 10.1007/s10092-018-0292-1
    [14] E. Godwin, T. Alakoya, O. Mewomo, J. Yao, Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems, Appl. Anal., 102 (2023), 4253–4278. http://dx.doi.org/10.1080/00036811.2022.2107913 doi: 10.1080/00036811.2022.2107913
    [15] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekker, 1983.
    [16] B. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim., 35 (1997), 69–76. http://dx.doi.org/10.1007/BF02683320 doi: 10.1007/BF02683320
    [17] C. Izuchukwu, S. Reich, Y. Shehu, A. Taiwo, Strong convergence of forward-reflected-backward splitting methods for solving monotone inclusions with applications to image restoration and optimal control, J. Sci. Comput., 94 (2023), 73. http://dx.doi.org/10.1007/s10915-023-02132-6 doi: 10.1007/s10915-023-02132-6
    [18] L. Jolaoso, A. Taiwo, T. Alakoya, O. Mewomo, A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math., 52 (2019), 183–203. http://dx.doi.org/10.1515/dema-2019-0013 doi: 10.1515/dema-2019-0013
    [19] I. Karahan, L. Jolaso, Athree steps iterative process for approximating the fixed points of multivalued generalized $\alpha$-nonexpansive mappings in uniformly convex hyperbolic spaces, Sigma J. Eng. Nat. Sci., 38 (2020), 1031–1050.
    [20] E. Khoroshilova, Extragradient-type method for optimal control problem with linear constraints and convex ojective function, Optim. Lett., 7 (2013), 1193–1214. http://dx.doi.org/10.1007/s11590-012-0496-2 doi: 10.1007/s11590-012-0496-2
    [21] G. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [22] W. Kumam, H. Rehman, P. Kumam, A new class of computationally efficient algorithms for solving fixed-point problems and variational inequalities in real Hilbert spaces, J. Inequal. Appl., 2023 (2023), 48. http://dx.doi.org/10.1186/s13660-023-02948-8 doi: 10.1186/s13660-023-02948-8
    [23] H. Liu, J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl., 77 (2020), 491–508. http://dx.doi.org/10.1007/s10589-020-00217-8 doi: 10.1007/s10589-020-00217-8
    [24] R. Maluleka, G. Ugwunnadi, M. Aphane, Inertial subgradient extragradient with projection method for solving variational inequality and fixed point problems, AIMS Mathematics, 8 (2023), 30102–30119. http://dx.doi.org/10.3934/math.20231539 doi: 10.3934/math.20231539
    [25] K. Muangchoo, A. Adamu, A. Ibrahim, A. Abubakar, An inertial Halpern-type algorithm involving monotone operators on real Banach spaces with application to image recovery problems, Comp. Appl. Math., 41 (2022), 364. http://dx.doi.org/10.1007/s40314-022-02064-1 doi: 10.1007/s40314-022-02064-1
    [26] A. Ofem, D. Igbokwe, A new faster four step iterative algorithm for Suzuki generalized nonexpansive mappings with an application, Advances in the Theory of Nonlinear Analysis and its Applications, 5 (2021), 482–506. http://dx.doi.org/10.31197/atnaa.869046 doi: 10.31197/atnaa.869046
    [27] A. Ofem, H. Isik, G. Ugwunnadi, R. George, O. Narain, Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces, AIMS Mathematics, 8 (2023), 14919–14950. http://dx.doi.org/10.3934/math.2023762 doi: 10.3934/math.2023762
    [28] A. Ofem, J. Abuchu, R. George, G. Ugwunnadi, O. Narain, Some new results on convergence, weak $w^2$–stability and data dependence of two multivalued almost contractive mappings in hyperbolic spaces, Mathematics, 10 (2022), 3720. http://dx.doi.org/10.3390/math10203720 doi: 10.3390/math10203720
    [29] A. Ofem, U. Udofia, D. Igbokwe, A robust iterative approach for solving nonlinear Volterra delay integro-differential equations, Ural Mathematical Journal, 7 (2021), 59–85. http://dx.doi.org/10.15826/umj.2021.2.005 doi: 10.15826/umj.2021.2.005
    [30] A. Ofem, A. Mebawondu, G. Ugwunnadi, H. Işık, O. Narain, A modified subgradient extragradient algorithm-type for solving quasimonotone variational inequality problems with applications, J. Inequal. Appl., 2023 (2023), 73. http://dx.doi.org/10.1186/s13660-023-02981-7 doi: 10.1186/s13660-023-02981-7
    [31] A. Ofem, A. Mebawondu, G. Ugwunnadi, P. Cholamjiak, O. Narain, Relaxed Tseng splitting method with double inertial steps for solving monotone inclusions and fixed point problems, Numer. Algor., in press. http://dx.doi.org/10.1007/s11075-023-01674-y
    [32] A. Ofem, A. Mebawondu, C. Agbonkhese, G. Ugwunnadi, O. Narain, Alternated inertial relaxed Tseng method for solving fixed point and quasi-monotone variational inequality problems, Nonlinear Functional Analysis and Applications, 29 (2024), 131–164. http://dx.doi.org/10.22771/nfaa.2024.29.01.10 doi: 10.22771/nfaa.2024.29.01.10
    [33] G. Ogwo, T. Alakoya, O. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization, 72 (2023), 677–711. http://dx.doi.org/10.1080/02331934.2021.1981897 doi: 10.1080/02331934.2021.1981897
    [34] G. Okeke, A. Ofem, A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces, Math. Method. Appl. Sci., 45 (2022), 5111–5134. http://dx.doi.org/10.1002/mma.8095 doi: 10.1002/mma.8095
    [35] G. Okeke, A. Ofem, T. Abdeljawad, M. Alqudah, A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8 (2023), 102–124. http://dx.doi.org/10.3934/math.2023005 doi: 10.3934/math.2023005
    [36] R. Pant, R. Pandey, Existence and convergence results for a class of non-expansive type mappings in hyperbolic spaces, Appl. Gen. Topol., 20 (2019), 281–295. http://dx.doi.org/10.4995/agt.2019.11057 doi: 10.4995/agt.2019.11057
    [37] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. http://dx.doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [38] G. Stampacchia, Formes bilinearies coercitives sur les ensembles convexes, C. R. Math. Acad. Sci. Paris, 258 (1964), 4413.
    [39] Y. Shehu, P. Vuong, P. Cholamjiak, A self-adaptive projection method with an inertial technique for split feasibility problems in Banach spaces with applications to image restoration problems, J. Fixed Point Theory Appl., 21 (2019), 50. http://dx.doi.org/10.1007/s11784-019-0684-0 doi: 10.1007/s11784-019-0684-0
    [40] Y. Shehu, O. Iyiola, F. Ogbuisi, Iterative method with inertial terms for nonexpansive mappings, Applications to compressed sensing, Numer. Algor., 83 (2020), 1321–1347. http://dx.doi.org/10.1007/s11075-019-00727-5 doi: 10.1007/s11075-019-00727-5
    [41] B. Tan, X. Qin, J. Yao, Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems, J. Glob. Optim., 82 (2022), 523–557. http://dx.doi.org/10.1007/s10898-021-01095-y doi: 10.1007/s10898-021-01095-y
    [42] D. Thong, D. Hieu, Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems, Numer. Algor., 82 (2019), 761–789. http://dx.doi.org/10.1007/s11075-018-0626-8 doi: 10.1007/s11075-018-0626-8
    [43] D. Thong, D. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algor., 80 (2019), 1283–1307. http://dx.doi.org/10.1007/s11075-018-0527-x doi: 10.1007/s11075-018-0527-x
    [44] D. Thong, P. Anh, V. Dung, D. Linh, A novel method for finding minimum‑norm solutions to pseudomonotone variational inequalities, Netw. Spat. Econ., 23 (2023), 39–64. http://dx.doi.org/10.1007/s11067-022-09569-6 doi: 10.1007/s11067-022-09569-6
    [45] D. Thong, D. Hieu, T. Rassias, Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Optim. Lett., 14 (2020), 115–144. http://dx.doi.org/10.1007/s11590-019-01511-z doi: 10.1007/s11590-019-01511-z
    [46] D. Thong, V. Dung, A relaxed inertial factor of the modified subgradient extragradient method for solving pseudo monotone variational inequalities in hilbert spaces, Acta Math. Sci., 43 (2023), 184–204. http://dx.doi.org/10.1007/s10473-023-0112-9 doi: 10.1007/s10473-023-0112-9
    [47] M. Tian, M. Tong, Self-adaptive subgradient extragradient method with inertial modification for solving monotone variational inequality problems and quasinonexpansive fixed point problems, J. Inequal. Appl., 2019 (2019), 7. http://dx.doi.org/10.1186/s13660-019-1958-1 doi: 10.1186/s13660-019-1958-1
    [48] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446. http://dx.doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
    [49] P. Vuong, Y. Shehu, Convergence of an extragradient-type method for variational inequality with applications to optimal control problems, Numer. Algor., 81 (2019), 269–291. http://dx.doi.org/10.1007/s11075-018-0547-6 doi: 10.1007/s11075-018-0547-6
    [50] Z. Wang, Z. Lei, X. Long, Z. Chen, Tseng splitting method with double inertial steps for solving monotone inclusion problems, arXiv: 2209.11989.
    [51] Z. Wang, P. Sunthrayuth, A. Adamu, P. Cholamjiak, Modified accelerated Bregman projection methods for solving quasi-monotone variational inequalities, Optimization, in press, http://dx.doi.org/10.1080/02331934.2023.2187663
    [52] H. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. http://dx.doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [53] J. Yang, H. Liu, Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algor., 80 (2019), 741–752. http://dx.doi.org/10.1007/s11075-018-0504-4 doi: 10.1007/s11075-018-0504-4
    [54] J. Yang, H. Liu, A modified projected gradient method for monotone variational inequalities, J. Optim. Theory Appl., 179 (2018), 197–211. http://dx.doi.org/10.1007/s10957-018-1351-0 doi: 10.1007/s10957-018-1351-0
    [55] Y. Yao, O. Iyiola, Y. Shehu, Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput., 90 (2022), 71. http://dx.doi.org/10.1007/s10915-021-01751-1 doi: 10.1007/s10915-021-01751-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(848) PDF downloads(46) Cited by(4)

Article outline

Figures and Tables

Figures(9)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog