Research article Special Issues

A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction

  • Received: 10 June 2022 Revised: 14 July 2022 Accepted: 14 July 2022 Published: 11 August 2022
  • MSC : 34A40, 34C10

  • One of the most famous equations that are widely used in various branches of physics, mathematics, financial markets, etc. is the Langevin equation. In this work, we investigate the existence of the solution for two generalized fractional hybrid Langevin equations under different boundary conditions. For this purpose, the problem of the existence of a solution will become the problem of finding a fixed point for an operator defined in the Banach space. To achieve the result, one of the recent fixed point techniques, namely the $ \alpha $-$ \psi $-contraction technique, will be used. We provide sufficient conditions to use this type of contraction in our main theorems. In the calculations of the auxiliary lemmas that we present, the Mittag-Leffler function plays a fundamental role. The fractional derivative operators used are of the Caputo type. Two examples are provided to demonstrate the validity of the obtained theorems. Also, some figures and a table are presented to illustrate the results.

    Citation: Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi. A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction[J]. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004

    Related Papers:

  • One of the most famous equations that are widely used in various branches of physics, mathematics, financial markets, etc. is the Langevin equation. In this work, we investigate the existence of the solution for two generalized fractional hybrid Langevin equations under different boundary conditions. For this purpose, the problem of the existence of a solution will become the problem of finding a fixed point for an operator defined in the Banach space. To achieve the result, one of the recent fixed point techniques, namely the $ \alpha $-$ \psi $-contraction technique, will be used. We provide sufficient conditions to use this type of contraction in our main theorems. In the calculations of the auxiliary lemmas that we present, the Mittag-Leffler function plays a fundamental role. The fractional derivative operators used are of the Caputo type. Two examples are provided to demonstrate the validity of the obtained theorems. Also, some figures and a table are presented to illustrate the results.



    加载中


    [1] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2021), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [2] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 141 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [3] A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos Soliton. Fract., 141 (2020), 110286. https://doi.org/0.1016/j.chaos.2020.110286
    [4] A. Din, Y. Li, Controlling heroin addiction via age-structured modeling, Adv. Differ. Equations, 2021, 1–17. https://doi.org/10.1186/s13662-020-02983-5 doi: 10.1186/s13662-020-02983-5
    [5] A. Din, Y. Li, A. Yusuf, Delayed hepatitis B epidemic model with stochastic analysis, Chaos Soliton. Fract., 146 (2021), 110839. https://doi.org/10.1016/j.chaos.2021.110839 doi: 10.1016/j.chaos.2021.110839
    [6] S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. https://doi.org/10.3906/mat-2010-70 doi: 10.3906/mat-2010-70
    [7] J. J. Nieto, J. Pimentel, Positive solutions of a fractional thermostat model, Bound. Value Probl., 2013 (2013), 5. https://doi.org/10.1186/1687-2770-2013-5 doi: 10.1186/1687-2770-2013-5
    [8] G. Infante, J. Webb, Loss of positivity in a nonlinear scalar heat equation, Nonlinear Differ. Equ. Appl., 13 (2006), 249–261. https://doi.org/10.1007/s00030-005-0039-y doi: 10.1007/s00030-005-0039-y
    [9] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0
    [10] S. Rezapour, M. E. Samei, On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation, Bound. Value Probl., 2020 (2020), 38. https://doi.org/10.1186/s13661-020-01342-3 doi: 10.1186/s13661-020-01342-3
    [11] J. Wang, X. Li, Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258 (2015), 72–83. https://doi.org/10.1016/j.amc.2015.01.111 doi: 10.1016/j.amc.2015.01.111
    [12] J. V. D. C. Sousa, E. C. De Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. https://doi.org/10.1016/j.aml.2018.01.016 doi: 10.1016/j.aml.2018.01.016
    [13] I. Ahmad, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. A. Demba, Stability results for implicit fractional pantograph differential equations via $\phi$-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. https://doi.org/10.3390/math8010094 doi: 10.3390/math8010094
    [14] B. Ghanbari, Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative, Math. Methods Appl. Sci., 44 (2021), 8759–8774. https://doi.org/10.1002/mma.7302 doi: 10.1002/mma.7302
    [15] Q. M. A. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos Soliton. Fract., 40 (2009), 183–189. https://doi.org/10.1016/j.chaos.2007.07.041 doi: 10.1016/j.chaos.2007.07.041
    [16] B. Ghanbari, On novel nondifferentiable exact solutions to local fractional Gardner's equation using an effective technique, Math. Methods Appl. Sci., 44 (2021), 4673–4685. https://doi.org/10.1002/mma.7060 doi: 10.1002/mma.7060
    [17] E. Bairamov, I. Erdal, S. Yardimci, Spectral properties of an impulsive Sturm-Liouville operator, J. Inequal. Appl., 2018 (2018), 191. https://doi.org/10.1186/s13660-018-1781-0 doi: 10.1186/s13660-018-1781-0
    [18] B. Ghanbari, A new model for investigating the transmission of infectious diseases in a prey-predator system using a non-singular fractional derivative, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7412 doi: 10.1002/mma.7412
    [19] D. Baleanu, H. Mohammadi, S. Rezapour, On a nonlinear fractional differential equation on partially ordered metric spaces, Adv. Differ. Equ., 2013 (2013), 83. https://doi.org/10.1186/1687-1847-2013-83 doi: 10.1186/1687-1847-2013-83
    [20] S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative, Adv. Differ. Equ., 2021 (2021), 20. https://doi.org/10.1186/s13662-020-03177-9 doi: 10.1186/s13662-020-03177-9
    [21] V. S. Erturk, Computing eigenelements of Sturm-Liouville problems of fractional order via fractional differential transform method, Math. Comput. Appl., 16 (2011), 712–720. https://doi.org/10.3390/mca16030712 doi: 10.3390/mca16030712
    [22] B. Ghanbari, On approximate solutions for a fractional prey–predator model involving the Atangana–Baleanu derivative, Adv. Differ. Equ., 2020 (2020), 679. https://doi.org/10.1186/s13662-020-03140-8 doi: 10.1186/s13662-020-03140-8
    [23] A. Lachouri, A. Ardjouni, A. Djoudi, Initial value problems for nonlinear Caputo fractional relaxation differential equations, Khayyam J. Math., 8 (2011), 85–93.
    [24] B. Ghanbari, On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional-fractal operators, Adv. Differ. Equ., 2020 (2020), 585. https://doi.org/10.1186/s13662-020-03040-x doi: 10.1186/s13662-020-03040-x
    [25] Gulalai, A. Ullah, S. Ahmad, M. Inc, Fractal fractional analysis of modified KdV equation under three different kernels, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.04.025 doi: 10.1016/j.joes.2022.04.025
    [26] A. Nabti, B. Ghanbari, Global stability analysis of a fractional SVEIR epidemic model, Math. Methods Appl. Sci., 44 (2021), 8577–8597. https://doi.org/10.1002/mma.7285 doi: 10.1002/mma.7285
    [27] D. Baleanu, S. Rezapour, Z. Saberpour, On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation, Bound. Value Probl., 2019 (2019), 79. https://doi.org/10.1186/s13661-019-1194-0 doi: 10.1186/s13661-019-1194-0
    [28] B. Ghanbari, A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease, Adv. Differ. Equ., 2020 (2020), 536. https://doi.org/10.1186/s13662-020-02993-3 doi: 10.1186/s13662-020-02993-3
    [29] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9
    [30] A. M. Yang, Y. Han, J. Li, W. X. Liu, On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Therm. Sci., 20 (2017), 717–721. https://doi.org/10.2298/TSCI16S3717Y doi: 10.2298/TSCI16S3717Y
    [31] M. A. Al-Gwaiz, Sturm-Liouville theory and its applications, Springer, 2008. https://doi.org/10.1007/978-1-84628-972-9
    [32] P. F. Gora, The theory of Brownian motion: A hundred years' anniversary, The 19th Marian Smoluchowski Symposium on Statistical Physics, 2006, 52–57.
    [33] P. Langevin, On the theory of Brownian motion, Compt. Rendus, 146 (1908), 530–533.
    [34] R. M. Mazo, Brownian motion: Fluctuations, dynamics, and applications, Oxford University Press, 2002.
    [35] N. Wax, Selected papers on noise and stochastic processes, Dover, New York, 1954.
    [36] R. Zwanzig, Nonequilibrium statistical mechanics, Oxford University Press, 2001.
    [37] V. Kobelev, E. Romanov, Fractional Langevin equation to describe anomalous diffusion, Prog. Theor. Phys. Supp., 139 (2000), 470–476. https://doi.org/10.1143/PTPS.139.470 doi: 10.1143/PTPS.139.470
    [38] B. J. west, M. Latka, Fractional Langevin model of gait variability, J. NeuroEng. Rehabil., 2 (2005), 24. https://doi.org/10.1186/1743-0003-2-24 doi: 10.1186/1743-0003-2-24
    [39] S. Picozzi, B. J. West, Fractional Langevin model of memory in financial markets, Phys. Rev. E, 66 (2002), 046118. https://doi.org/10.1103/PhysRevE.66.046118 doi: 10.1103/PhysRevE.66.046118
    [40] A. H. Bhrawy, M. A. Alghamdi, A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals, Bound. Value Probl., 2012 (2012), 62. https://doi.org/10.1186/1687-2770-2012-62 doi: 10.1186/1687-2770-2012-62
    [41] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal.: Real World Appl., 13 (2012), 599–606. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052
    [42] J. Wang, S. Peng, D. O'Rregan, Local stable manifold of Langevin differential equations with two fractional derivatives, Adv. Differ. Equations, 2017 (2017), 335. https://doi.org/10.1186/s13662-017-1389-6 doi: 10.1186/s13662-017-1389-6
    [43] C. Zhai, P. Li, H. Li, Single upper-solution or lower-solution method for Langevin equations with two fractional orders, Adv. Differ. Equations, 2018 (2018), 360. https://doi.org/10.1186/s13662-018-1837-y doi: 10.1186/s13662-018-1837-y
    [44] A. Zada, R. Rizwan, J. Xu, Z. Fu, On implicit impulsive Langevin equation involving mixed order derivatives, Adv. Differ. Equations, 2019 (2019), 489. https://doi.org/10.1186/s13662-019-2408-6 doi: 10.1186/s13662-019-2408-6
    [45] S. Yang, M. Deng, R. Ren, Stochastic resonance of fractional-order Langevin equation driven by periodic modulated noise with mass fluctuation, Adv. Differ. Equations, 2020 (2020), 81. https://doi.org/10.1186/s13662-020-2492-7 doi: 10.1186/s13662-020-2492-7
    [46] W. Sudsutad, K. S. Ntouyas, J. Tariboon, Systems of fractional Langevin equations of Riemann-Liouville and Hadamard types, Adv. Differ. Equations, 2015 (2015), 235. https://doi.org/10.1186/s13662-015-0566-8 doi: 10.1186/s13662-015-0566-8
    [47] J. Tariboon, S. K. Ntouyas, Nonlinear second-order impulsive q-difference Langevin equation with boundary conditions, Bound. Value Probl., 2014 (2014), 85. https://doi.org/10.1186/1687-2770-2014-85 doi: 10.1186/1687-2770-2014-85
    [48] S. I. Denisov, H. Kantz, P. Hanggi, Langevin equation with super-heavy-tailed nois, J. Phys. A: Math. Theor., 43, (2010), 285004. https://doi.org/10.1088/1751-8113/43/28/285004 doi: 10.1088/1751-8113/43/28/285004
    [49] S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. https://doi.org/10.1016/j.physleta.2008.08.045 doi: 10.1016/j.physleta.2008.08.045
    [50] M. Uranagase, T. Munakata, Generalized Langevin equation revisited: Mechanical random force and self-consistent structure, J. Phys. A: Math. Theor., 43 (2010), 455003. https://doi.org/10.1088/1751-8113/43/45/455003 doi: 10.1088/1751-8113/43/45/455003
    [51] Z. Heydarpour, J. Izadi, R. George, M. Ghaderi, S. Rezapour, On a partial fractional hybrid version of generalized Sturm-Liouville-Langevin equation, Fractal Fract., 6 (2022), 269. https://doi.org/10.3390/fractalfract6050269 doi: 10.3390/fractalfract6050269
    [52] H. Fazli, H. G. Sun, J. J. Nieto, Fractional Langevin equation involving two fractional orders: Existence and uniqueness revisited, Mathematics, 8 (2020), 743. https://doi.org/10.3390/math8050743 doi: 10.3390/math8050743
    [53] B. C. Dhage, On a-condensing mappings in Banach algebras, Math. Stud.-India, 63 (1994), 146–152.
    [54] B. C. Dhage, A nonlinear alternative in Banach algebras with applications to functional differential equations, Nonlinear Funct. Anal. Appl, 8 (2004), 563–575.
    [55] B. C. Dhage, Fixed point theorems in ordered Banach algebras and applications, Panam. Math. J., 9 (1999), 83–102.
    [56] B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal.: Hybrid Syst., 4 (2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005 doi: 10.1016/j.nahs.2009.10.005
    [57] B. C. Dhage, V. Lakshmikantham, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Differ. Equ. Appl., 2 (2010), 465–486. https://dx.doi.org/10.7153/dea-02-28 doi: 10.7153/dea-02-28
    [58] M. A. E. Herzallah, D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal., 2014 (2014), 389386. https://doi.org/10.1155/2014/389386 doi: 10.1155/2014/389386
    [59] Y. Zhao, S. Sun, Z. Han, Q. Li, Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 1312–1324. https://doi.org/10.1016/j.camwa.2011.03.041 doi: 10.1016/j.camwa.2011.03.041
    [60] H. Ge, J. Xin, On the existence of a mild solution for impulsive hybrid fractional differential equations, Adv. Differ. Equations, 2014 (2014), 211. https://doi.org/10.1186/1687-1847-2014-211 doi: 10.1186/1687-1847-2014-211
    [61] C. Derbazi, H. Hammouche, M. Benchohra, Y. Zhou, Fractional hybrid differential equations with three-point boundary hybrid conditions, Adv. Differ. Equations, 2019 (2019), 125. https://doi.org/10.1186/s13662-019-2067-7 doi: 10.1186/s13662-019-2067-7
    [62] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [63] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [64] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integral and derivative: Theory and applications, Switzerland: Gordon and Breach Science Publishers, 1993.
    [65] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Mathematical Journal, Vol. 19, 1971.
    [66] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal.: Theory Methods Appl., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1317) PDF downloads(109) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog